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Preface

This book has grown out of lectures and courses in calculus of variations
and optimization taught for many years at the University of Michigan to
graduate students at various stages of their careers, and always to a mixed
audience of students in mathematics and engineering. It attempts to present
a balanced view of the subject, giving some emphasis to its connections with
the classical theory and to a number of those problems of economics and
engineering which have motivated so many of the present developments,
as well as presenting aspects of the current theory, particularly value theory
and existence theorems. However, the presentation of the theory is connected
to and accompanied by many concrete problems of optimization, classical
and modern, some more technical and some less so, some discussed in
detail and some only sketched or proposed as exercises.

No single part of the subject (such as the existence theorems, or the more
traditional approach based on necessary conditions and on sufficient
conditions, or the more recent one based on value function theory) can give
a sufficient representation of the whole subject. This holds particularly for
the existence theorems, some of which have been conceived to apply to
certain large classes of problems of optimization.

For all these reasons it is essential to present many examples (Chapters
3 and 6) before the existence theorems (Chapters 9 and 11-16), and to
investigate these examples by means of the usual necessary conditions,
sufficient conditions, and value function theory.

This book only considers nonparametric problems of the calculus of
variations in one independent variable and problems of optimal control
monitored by ordinary differential equations. Multidimensional problems
monitored by partial differential equations, parametric problems with simple
and multiple integrals, parametric problems of optimal control, and related
questions of nonlinear integration will be presented elsewhere.
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Chapter 1 is introductory. The many types of problems of optimization
are reviewed and their intricate relationships illustrated.

Chapter 2 presents the necessary conditions, the sufficient conditions,
and the value function theory for classical problems of the calculus of
variations. In particular, the Weierstrass necessary condition is being studied
as a necessary condition for lower semicontinuity on a given trajectory.

Chapter 3 consists mainly of examples. In particular, it includes points of
Ramsey’s theory of economic growth, and points of theoretical mechanics.

Chapters 4 and 5 deal with problems of optimal control. They contain a
statement of the necessary condition, a detailed discussion of the trans-
versality relation in its generality, a discussion of Bellman’s value function
theory, and a statement of Boltyanskii’s sufficient condition in terms of
regular synthesis.

Chapter 6 consists mainly of examples. In particular, points of the
neoclassical theory of economic growth are also studied.

Chapter 7 presents two proofs of the necessary condition for problems
of optimal control.

Chapter 8 contains preparatory material for existence theorems, in partic-
ular, Kuratowski’s and Ryll-Nardzewski's selection theorems, McShane’s
and Warfield’s implicit function theorem, and some simple forms of the
lower closure theorem for uniform convergence.

Chapter 9 deals with existence theorems for problems of optimal control
with continuous data and compact control space. These are essentially
Filippov’s existence theorems. The proofs in this chapter are designed to be
elementary in the sense that mere uniform convergence is involved, whereas
in Chapters 10 and 11 use is made of weak convergence in L,.

Chapter 10 presents the Banach—Saks—Mazur theorem, the Dunford-
Pettis theorem, and closure, lower closure, and lower semicontinuity
theorems for weak convergence in L.

Chapter 11 deals with existence theorems based on weak convergence.
Existence theorems are proved for Lagrange problems with an integrand
which is an extended function, and then existence theorems are derived for
problems of optimal control. Moreover, existence theorems are proved for
problems with comparison functionals, for isoperimetric problems, and
specifically for problems which are linear in the derivatives, or in the controls.
In particular, this chapter contains a present day version of the theorem
established by Tonelli in 1914 for problems with a uniform growth property.

In Chapter 12 existence theorems are presented where a growth assump-
tion fails at the points of a “‘slender”” set. In Chapter 13 existence theorems
under numerous analytical conditions are studied. Chapter 14 deals with
existence theorems for problems without growth assumptions. Chapter 15
presents theorems based on mere pointwise convergence. Chapter 16 deals
with Neustadt-type existence theorems for problems with no convexity
assumptions.

Chapter 17 covers a few points of convex analysis including duality, and
the equivalence of a certain concept of upper semicontinuity for sets with
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the concept of seminormality of Tonelli and McShane for functions, and
suitable properties in terms of convex analysis.

Chapter 18 covers questions of approximation of usual and generalized
trajectories.

Each chapter contains examples and exercises. Bibliographical notes at
the end of each chapter provide some historical background and direct the
reader to the literature in the field.

A number of parts in this book are in smaller print so as to facilitate, at a
first reading, a faster perusal. The small-print passages include most of the
examples and remarks, several of the complementary considerations, and a
number of the more technical proofs.

I wish to thank the many associates and graduate students who, with their
remarks and suggestions upon reading these notes, have contributed so
much to make this presentation a reality.

Finally, I wish to express my appreciation to Springer-Verlag for their
accomplished handling of the manuscript, their understanding and patience.
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CHAPTER 1
Problems of Optimization—

A General View

1.1 Classical Lagrange Problems of
the Calculus of Variations

Here we are concerned with minima and maxima of functionals of the form

(1.1.1) I[x] = ﬁ " folt,x@, X (@) dr, () = djdr,
where we think of I[x] as dependent on an n-vector continuous function
x(t) = (x',...,x"), t; <t < t,, or continuous curve of the form C:x = x(t),

t, <t <t, in R""! in a suitable class. Actually the subject of our inquiry
will go much farther than the mere analysis of minima and maxima of
functionals.

Here t is the real or independent variable, t e R! = R, usually called
“time”, and x = (x!,...,x")e R%n > 1, is a real vector variable, usually
called the space or phase variable. Thus, we deal with continuous functions
x(t) = (x',...,x"), t; <t < t,, which we may call trajectories, or curves.
Here fi(t, x,x') is a given real valued function defined on R'"?", or in what-
ever part of R**3" it is relevant and it will be called a Lagrangian function,
or briefly a Lagrangian.

We may allow the variable (¢, x) to vary only in a given set 4 of the tx-
space R'*", possibly of the form 4 = [1,,T] x Aq. Ap < R”, and we do
not exclude that A is the whole tx-space. Thus we may require that

(1.1.2) Gx(t)ed, t<t<t,.

We may require the functions x(¢) to satisfy some boundary conditions.
A typical one is “both end points fixed,” or x(t;) = x,, X(t3) = X5 (t1, 3, X1,
x, fixed), t; <ty x;=(x},....x})€R", x, =(x3,...,x3)€ R" We may

1



2 Chapter I Problems of Optimization—A General View

then say that we consider curves C “joining fixed points 1 = (¢, x,) and
2 =(t;,x,)in R**"™,

A great variety of boundary conditions are of interest, e.g., C joins a fixed
point 1 = (t,x) to a given curve I':x = g(¢), ¢ <t < 1", that is, x(¢,) = X1
x(t3) = g(ty), t; < tp, t' < t, < t". Alternatively, we may require that C join
two given sets B, and B, in R""'. Thus, the boundary conditions concern
the 2n + 2 real numbers ¢, x(t,) = (x},...,x%), t,, x(t,) = (x},...,x%), or
the ends e[ x] = (14, x(t,), {5, x(t,)) of the trajectory x. Note that t; and t,, in
particular, need not be fixed. Often, these boundary conditions are expressed
in terms of a set of equalities or inequalities concerning the 2n + 2 numbers
above. A general and compact way to express boundary conditions is to
define a subset B of the t,x,1,x,-space R?"*2 and to require that

(1.1.3) e[x]e B, or (t;,x(t;),t,x(t,)) € B.

Thus, the case of both end points fixed, or ¢, x;, t,, x, fixed, corresponds
to B being the single point (t,, x,,,,x,) in R*"*2; the case of fixed first end
point (z, x,) and second end point (¢,, x,) on a given curve I" corresponds to
B =(t;,x,) x I, a subset of R?"*2,

Problems of minima and maxima for functionals (1.1.1) with only con-
strains as (1.1.2) and (1.1.3) are often referred to as Lagrange problems of
the calculus of variations, and sometimes as free problems.

Besides (1.1.2), (1.1.3), another type of constraint is often required, namely

(1.1.4) [Fwpa<c

for some constants p > 1, C > 0. More generally, we may require that for
some “comparison functional” we have

ﬁ " Hit, x(0),X() dt < C.

Alternatively, we may require that any number N of given analogous
functionals have given values, say

JIx) = [ e x@.x@nde = ¢ for <€, j=1,..., N,

These problems with equality signs are sometimes called isoperimetric
problems. (See Section 3.6 for some examples). The same problems with <
signs are sometimes called problems with comparison functionals.

And now a few words on the class of n-vector functions x(t), t; <t < t,,
we shall take into consideration. One could expect to find the optimal
solution in the class C' of all continuous functions x(¢) = (x, ..., x"),
t; <t <t,, with continuous derivative x'(r) = (x’*,...,x™). Very simple
examples (see e.g. Section 2.6, Remark 2) show that it would be more realistic
to search for optimal solutions in the class, say C,, of all continuous functions
x(t) = (x4, ...,x"), t; <t <t,, with sectionally continuous derivative. In
such a situation, if we assume that fy(t, x,u) is defined and continuous in
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A x R, then fyt, x(t), x'(t)) would be sectionally continuous in [¢;,t,] and
(1.1.1) would be a Riemann integral.

However, in view of other examples (see e.g. Section 2.6, Remark 1) in
which the optimal solution is not in such a class C,, and particularly because
of exigencies related to the existence theorems (Chapters 9-16), it has been
found more suitable to search for optimal solutions in the larger class of all
absolutely continuous (AC) n-vector functions x(f) = (x!,...,x"). (See Sec-
tion 2.1 for definitions, and the Bibliographical notes at the end of this
Chapter for historical views).

We only mention here that the class of AC functions is the largest class
of continuous functions x(f) = (x,...,x"), t; <t <t,, possessing derivative
X(t) = (x'!,...,x") ae. in [f,,t,] and for which the fundamental theorem of
caleulus holds, ie., x(B) — x(a) = [# x'(t)dt, the integral being a Lebesgue
integral on each component (see Section 2.1 for the definition of AC func-
tions). Conversely, if g(¢) is L-integrable, then G(1) = [}, g(r)dr is AC.

Again, if we assume that folt, x, u) is continuous in A X R" and x(1) is AC,
then fy(+,x(+),x'(-)) is certainly measurable. In such a situation we shall
explicitly require that oo x(4),x'(7)) 1s L-integrable, and then (1.1.1) is an
L-integral. We only mention here that a set E on the real line is said to be
of measure zero if it can be covered by a countable collection of open intervals
(0.8, i=1,2,..., possibly overlapping, whose total length i — o) is
as small as we want. A property P then is said to hold almost everywhere
(a.e.) if it holds everywhere but at the points of a set E of measure zero.

1.2 Classical Lagrange Problems with
Constraints on the Derivatives

A very important recent extension of the concept above is to consider the
same integral (1.1.1), with the same possible constraint (1.1.2) and boundary
conditions (1.1.3), but now with restrictions concerning the possible values of
x'. This can be understood by saying that, for every (t, x) € A, a subset Q(t, x)
of R" is assigned, and that we consider only n-vector AC functions x(t) =

(x!,...,x"), t, <t <t,, whose derivative x'(t) = (x'',...,x™ must belong

to the corresponding set Q(z, x(¢)). In other words, we may require that the
n-vector AC function x(t) satisfy

(1.2.1) x'(t) € Q(t, x(1)), te[ty,t,] (ae)

This is called an orientor field, or an orientor field relation.

For instance, for n=1 and Q=0Q(t,x)=[zla<z< b], we would
restrict ourselves to only those AC scalar functions x(t) whose slope x'(t) is
between two fixed numbers a and b. For instance, for any n = 1 and Q(t,x) =
[ze Rz < a], we would restrict ourselves to only those AC n-vector



