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FOREWORD

The Nankai Institute of Mathematics held a special Year in Probability and Statis-
tics during the academic year 1988-1989. We had over 150 specialists, professors and
graduate students, who participated in this Special Year from August 1988 to May 1989.
More than twenty outstanding probabilists and statisticians from several countries were
invited to give lectures and talks. This volume contains two lectures, one is written by
Professor R. L. Dobrushin, and the other one by Professor S. Kusuoka.

We would like to express our gratitude to Professors Dobrushin and Kusuoka for

their enthusiasm and cooperation.

Ze-Pei Jiang
Shi-Jian Yan
Ping Cheng
Rong Wu
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ON THE WAY TO THE MATHEMATICAL
FOUNDATIONS OF STATISTICAL MECHANICS

R.L.DOBRUSHIN

80. Introduction

When I was a student in Moscow University at the end of the forties, I had to
attend some lectures on physics. I had at that time a deep impression that although the
content was very interesting to me, the form seems rather formidable. I asked myself,
“Why don’t they distinguish definitions from implications?” “Do they really fail to
understand the difference between the necessary and the sufficient conditions?” “How
can they formulate statements for which we see evident counterexamples?” I hoped that
if I should become a professor, it would be possible for me to give a course of lectures
on physics at a logical level consistent with the standard set by modern mathematics.

Later I understood that I had been naive and that the situation is not so simple. In
fact my professors were not very bad. The style of their lectures reflected the logical level
of modern theoretical physics which contrasts sharply with the logical level of modern
mathematics. However, this was not always so. In the last century mathematics and
physics were almost united. Readers will easily recall the names of great scientists
who made important contributions both to physics and to mathematics. At that time
there were no essential differences between the styles of exposition in the two subjects.
Mathematicians and physicists spoke the same language and understood each other.

At the beginning of this century physics and mathematics began to move in different
directions. Mathematics was incorporating very exciting new ideas: set theory, measure
theory, modern algebra, functional analysis, topology, etc. New and higher standards
of mathematical rigor were developed and any purported mathematical result which
did not conform to this standard was considered either as erroneous or at least as lying
outside of mathematics. We have now a standard universally accepted language for
modern mathematics.

Physics went along another path. The new exciting ideas of quantum physics, theory
of relativity, statistical physics, etc. posed attractive problems which required urgent
solutions. In the beginning the methods of classical mathematical analysis developed
in the last century were enough for their purposes. Physicists did not know modern
mathematics and often treated it as an abstract and useless game. I have heard, for
example, that our great physicist, Landau, said that he could invent all the mathematics
which he needed. Such a point of view was even fashionable among physicists during
that period. Physicists did not want to waste time on the fussy mathematical details
needed for a rigorous proof. They considered something to be “proved” by using an
argument which to a mathematician was just a rough plan or an idea for a future proof.



As a result, mathematicians and physicists almost ceased to understand and even hear
each other.

A particular example of this estrangement is provided by probability theory (in-
cluding the theory of random processes) on the one hand and statistical mechanics on
the other. Both subjects were developing actively during these years, but even though
they are concerned essentially with the same questions they were isolated from each
other. And, for the most part, practitioners of the two subjects almost forget each
other’s existence.

In the middle of this century the situation began to change with the impulse for
change coming from both mathematics and physics. Many good mathematicians be-
gan to realize that although there were still open and difficult problems in traditional
mathematical directions the main constructions had been completed, and it was time
for mathematics to have an infusion of new fresh ideas and problems. They turned to
physics for inspiration. On the other hand, the constructions of modern physics be-
came more and more complex and abstract. Unexpectedly, modern mathematics found
applications in modern physics. The ideas of modern algebra and differential topology
became essential to relativity theory and the theory of quantum fields. The ideas of
functional analysis are basic for quantum mechanics, etc.

Interacton between the theory of probability and statistical physics also began to
develop very rapidly. I think the investigations of recent years reveal that from the
mathematical point of view statistical physics can be considered as a branch of pro-
bability theory. Seemingly all the main ideas and problems of statistical physics can
be formulated in probabilitic language. But, of course, only a small portion of the
assertions in statistical physics can be proved now at a mathematically rigorous level.

One should not suppose that all physicists will adopt the standards of mathematical
rigor in pursuing their studies. In their obvious anxiety for quick results they will
not cease to neglect mathematical logic. However, beginning in the fifties a different
discipline with great rigor was evolved; it i1s the new science of mathematical physics.
This is not the earlier “mathematical physics” which, for the most part, constituted
a chapter in partial differential equations; but it is a science which is distinguished
from physics and mathematics and lies between them. This new mathematical physics
uses the language and standards of modern mathematics in studying the problems of
physics. There are many scientists trained both in physics and mathematics who now
work in this area. They also take up the most important task of helping mathematicians
and physicists understand the problems and results in their respective fields in terms
of what is apprehensible to both of them. Aside from several journals specializing in
mathematical physics, there is now an international organization separate from the
traditional physics and mathematics organizations.

The mathematical statistical physics about which I will speak in my lectures here
has to be considered as a branch of mathematical physics strongly connected with
probability theory, and I will speak only about the classical statistical physics. Classical
theory means that it does not use the notions of quantum mechanics. However, all the
ideas of classical statistical physics have their analogue in quantum statistical physics.
Sometimes one refers to the area of mathematics used to study quantum mechanics
problems as the non-commutative probability theory.

Statistical physics is strongly connected with other important branches of physics.



Thus, quantum field theory, which unites quantum mechanics and relativistic theory,
can also be transformed into probabilistic language. To do this it is necessary to an-
alytically extend quantum field theory to the case of complex time parameter, and to
consider the case of pure imaginary time. Then we obtain a probabilistic picture of the
so-called Euclidean field theory. Its connection with statistical physics is the same as
that of continuous time random processes with discrete time random processes. Sta-
tistical physics can be used as a discrete approximation to quantum field theory, but
the continuous version is much more complicated. In Euclidean quantum field theory
it is necessary to consider Markov random fields in which realizations are distributions
(generalized functions). This is not surprising from the point of view of classical proba-
bility theory. Every probabilist knows that almost all trajectories of a Markov diffusion
process are continuous but non-differentiable functions. In the multidimensional case
studied in quantum field theory the realizations of the natural Markov field become
even worse. This very interesting theme requires a special exposition which we will not
give here.

The aim of these lectures is to give an exposition, at a mathematical level, of the
foundations of classical statistical mechanics. It is not easy even now. As a result of
mathematical investigations in recent years we can at least reformulate all of the main
notions of statistical mechanics in the language of mathematical definitions. But from
the point of view of mathematicians modern statistical physics is something like a mix
of some continents of well-developed mathematical theories with islands of separate
mathematical results, amid a sea of open problems and conjectures (Of course, most
physicists think of conjectures as results). Each year more and more conjectures get
transformed into theorems. But now the majority of mathematical papers are devoted
to problems of equilibrium statistical physics. Progress in this domain has found a sys-
tematic exposition in book form (See, for example, [Sinai(1982)], [Georgii(1988)]). The
problem of the foundation of statistical physics, including the foundation of equilibrium
statistical physics, is in the realm of nonequilibrium statistical physics, and here we
have only isolated islands of theorems in a sea of conjectures.

Nevertheless, it seems that we now see a plan, a way to construct an orderly theory.
I will try to give the main mathematical definitions, and explain the physical ideas
underlying these definitions. I will also formulate a lot of open mathematical problems.
Many of them seem very difficult now. I will also formulate theorems whenever they
exist, but I will rarely give nontrivial proofs, leaving proofs to be found in the references.
As is usual with young branches of mathematics all the proofs in mathematical nonequili-

brium statistical physics are very complex and involved. Usually, with the development
of a branch of mathematics the proofs become simpler and shorter. Since this is not so
yet in the area discussed here it is not possible to give systematic proofs on the scale of
these lectures.

I hope that the publication of these lectures helps to stimulate mathematical in-
vestigations in this field, especialy in China where I see a lot of talented young math-
ematicians who are eager to work on new problems. I am very grateful to Prof. Chen
Mu-fa and his colleagues Chen Dong-ching and Zheng Jun-li who wrote up my lectures
and helped to prepare their final version. Without their invaluable and well-qualified
help this text would have never been written. I am also grateful to the members of the
Nankai Institute of Mathematics for their hospitality. Here in Tianjin I have a happy



possibility to meet Prof. M.D.Donsker.* I am very grateful to him for translating this
introduction from its original Russian-Chinese dialect into real English.

Tianjin, 1987 December.

*which passed away prematurely in 1991.



§1. Realizations of the Classical
Fluid Model

In this lecture I will speak mainly about the classical fluid model where the dynamics
of particles is governed by the laws of classical Newtonian dynamics. It is the most
natural and best-known model of statistical physics. Of course, as many physical models
are, it is only an approximation to reality. For example, it does not take into account
the quantum effects.

We will assume for simplicity that all particles are similar, i.e. they are particles
of the same substance. The generalization to the case of particles of several types is
not so complex. Denote by (¢,v) € R x R? the particle with position ¢ and velocity
v, where d is a positive integer. In classical physics, d = 3. But some other dimensions
also have physical interest (Dimension d = 1 corresponds to the statistics of threads,
dimension d = 2 corresponds to the statistics of surfaces, dimension d = 4 corresponds
to the problems arising from quantum field). So we will suppose that d is arbitrary and
will, as in modern physics, follow the change of situation in the dependence of d.

If we have N particles, we denote their configuration by

w= ((qlvyl)u"' w(qNul’N)) (S (ZN é(Rd X Rd)N

The realization space with an arbitrary number of particles is defined as follows:

where () is an empty set of particles.
Finally, from the physical point of view, it is natural to treat particles as undistin-
guished ones. For any w € Qw= ((q1,v1), - ,(gn,vN)) and A C R? x RY, let

mo(A) = |{i € {1,--- \N}: (gi,vs) € A}]|

where |A| = the number of elements in A, 7, is an integer-valued measure on Borel

o- algebra in R? x R? and 7,(R? x R?) < oo. In this way, we have defined a mapping

from Q into the space II of such measures, we call 7 € II an ordinary realization if
=m({z}) <1forall + € R? x R?%. Let

X,={zeR*xR?: n(z) =1}.

So we can interpret the ordinary realization X, as a finite subset of the space R% x R%.
For most of the situations it is enough to consider only ordinary realizations and we will
do so in almost all our lectures.

Statistical physics studies a finite but very large system of particles. One of the main
features of mathematical approach is the explicit consideration of an infinite particle
system which makes many notions of statistical physics much more sharp and accurate.
We will systematically use in these lectures such a point of view. Let

II £ {r: 7 is an integer-valued measure on R* x R? with 7(S x R%) < oo for all
compact subsets S C R?}

Q2 {X CcR!xR?: |XN(SxR?| < oo for all compact subsets S C R%},



We will call elements of II and Q2 locally finite realizations.

We assert that 2 C II by using the identification similarly used above for a finite
particle system.

Let Brr be the smallest o-algebra with respect to which the functions f(7) = 7(S x
5’) 7 € II are measurable, where S and S are compact subsets of R?. Let Bg be the
smallest o-algebra with respect to which the functions f(X) = XN (S x S), X ¢ Q
are measurable for all pairs (S, S) of compact subsets of R?. It is easy to prove the
following fact:

1) Q C II is a measurable subset of IT, and the restriction of By on §2 coincides with
Bq.

We will leave the proof of this fact to our reader as an exercise.

Given a compact subset V' C RY, we define Iy, and Qy by replacing R? x R? with
V x R? in the definitions of IT and  respectively. Similarly we introduce By, and
Bq, . Of course Qy C Q, Iy C II and it is easy to check that these embeddings are
measurable.

Now we have two measurable spaces (€2, Bq) and (II, By). We will construct a basic
measure on them, connected with the usual Lebesgue measures in Euclidean space.
Define Qy = U Q where Q‘, = (V x RY)V, and the transformation a : Qv — Oy,
alw)=m,() € Hv.w € Q\

Let Ay be the Lebesgue measure on (V x R*)M N =1,2,---. Define a measure A
on Qy such that ;\(A) = :\N(A) for N > 1 and all measurable subsets A C (V' x R4V,
and set

oY = {re Oy :n(V xRY) = N}, Iy = U, 1.

For A C HO’, N > 0, we define

NA) 2 e ()

and assume A(II$,) = 1 (The set IIY, consists of a unique measure 7}, = 0). For any
B C Ily, there is a partition of B, B = E:o AY A e I, 2 = 0,1,2,- -+, so we can

define
A\(B) & Z/\

For any compact subsets Vi, V5, Vi € Vo € R? x R?, the restriction of Ay, to
Vi is equal to Ay,. This is because of the consistency of Lebesgue measures. Since
II = Uycpelly, then using the previous property we can define a measure on II which
is also denoted by A and will be called the basic measure on II. By definition, we have

2). If Vi,V C R? are compact subsets and Vi NV, = ¢,V 2 V; UV, then
Hv = Hvl X Hv, an = BHV, X an and /\v = /\vl X ’\Vz'

3). A(IT\ 2) = 0.

The proof of these facts can also be considered as an exercise. Very often we will
treat the basic measure as a measure on the space of ordinary realizations 2. The
reader who knows well the probability theory understand that ) is a Poisson measure
well known in the theory of point random fields.



§2. Dynamics of a Finite System

Suppose that we are given N particles w = ((q1,v1), - ,(¢n,vn)) and an inter-
acting potential U. Here we consider only the pair potentials which are translation
invariant, isotropic, and so we interpret a potential as a function on Rt = {z e R: 0 <
z < oo} into R. We will consider the following equations of motion of Newtonian type.*

dgi(t) __ . N
(2.1) {dd, = ui(t) 121. N,t € (0,00)

i(t !

28 = —m grady, L, ;4 Ulla; = ail),

where m is the mass of one particle. If we denote the momentum by p; = mv;, we have
the following Hamiltonian equations:

dgi
_dqt_:gradp.'H(qlv'“quvplv'“va) i=1.---.N
i = —grady, H(qi, + ,qn.P1, " .PN)
where
H{qy, -+ ,qn,pP1,""* ,PN)
N
1 (pi)? N
=52 =+ ) Ullsi—gl)
i=1 =1
1#)

This last quantity is called the Hamiltonian of the system. In the following we let m = 1.

Mathematicians often ask: What function U is a real physical potential? The
question is not correct. First of all, any classical model is only a rough approximation
to a quantum model, and our choice of potential is such an approximation in some
sense. Secondly, there are a lot of types of particles, and different types of potentials
are naturally for different types of particles. Finally, it is better to have results for some
potential than to have no results. So potentials having the simplest analytical structures
are often considered. But the results for any potentials are interesting. It is especially
interesting to have results applicable to a wider class of potentials and to follow the
change of qualitative property of the system in the dependence on the potential. This
conclusion should sound pleasant to mathematicians.

Now we will give some typical examples of the potentials.

1. Lenard-Jons potential

K K. .
U(r):{ml"-—m%’ ifz#0

0, ifz =0,

where K, and K, are positive constant, [ and n are positive integers. In the 3-
dimensional case, it is often to suppose that

l=6, n=2=12
Figure 1 indicates one of this kind of potentials.

* See for example [Arnold(1978)] in connection with elementary notions of mechanics used in these
lectures.



Fqure 1

This structure of the potential can be justified by some quantum type of consid-
eration for the case of one-atom gas. The decreasing part of the graph corresponds to
the repulsion of particles and the increasing part corresponds to their attraction. The
value U(0) = oo means that two particles can not collide with each other.

2. Morse potential
U(z) = K[1 — exp{—a(z — 2)*}]?, >0,

where a and K are constants; 7 is a fixed reference point.

U(x) 4

Py

X
Figure 2

Such a potential is used for two-atom particles. The value U(0) < oo means that
the two particles can meet together. Of course this is not very natural from the physical
point of view.

3. Hard core potential

Suppose that there exists an r > 0 such that

U(z) =00, |z|< T

or, in another language, each particle is a hard sphere of diameter r. It means that
particles can not be closer to one another than at a distance r.
Here we give three potentials of this kind.



3(a). U(z) > o00asz —r:

U(-")4

In this case particles can not collide because of repulsion. When the distance between
them is close to r there is a very strong repulsion.

3(b). U(z) »c#o0casz —r:

VL !

In this case particles can collide. So we have to add to the equations of motion (2.1)

some boundary conditions.
Usually we will suppose that the collision is elastic one (As for ordinary billiard-balls.

see later). To have only pair collisions will permit us to define a unique solution to the
equations of motion. This is not so in the case of multiple collisions (See graph below).

OO

Pair collision
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Q.

(A

Collision of three particles.

It is natural to suppose that under ordinary circumstances the multiple collisions
occur with probability 0, but this question has not been thoroughly studied at a math-
ematical level.

3(c). U(z) =0, |z| > r:

vlxly

X

Np--—--—---

It is the case of pure hard core potential where interaction of particles arises only at the
moment of their collisions.
Generally we will suppose that r = 0 is a possible value for the hard core diameter.

The case
U(z) =0,z € R*

corresponds to that of an ideal gas where particles do not interact.

We shall mainly suppose that some conditions of smoothness are true:

1° The smooth potential. The potential U(z) has continuous first derivative in
7 € (0,00). In this case we can find a unique solution to the equations of motion under
certain initial conditions.

20 The smooth hard core potential, i.e.

U(r) =00, |z| <,

U(z) - 00, asz —r,

and U(z) has continuous first derivative for = € (r,00). This means that when particles
get closer and closer, the energy becomes very great. By using the law of conservation
of energy we can again prove the existence of a unique solution.

Now we give some notations. In the following we consider only ordinary realization.
and in an obvious way redefine the motion as a motion of nondistinquished particles.
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Let A denote the set of all finite subsets of R? x R?. For each t € Ry = [0.xc).
we define a mapping T; : A — A as follows: Tia is the realization at the moment ¢ if
a € A is an initial realization, i.e. Tya = a(t), where a(t) is the solution of the equations
of motion with initial condition a. Using the well-known properties of the solution of
differential equations, we can define also Ty for ¢ < 0 and have Ti+, = Ty - T, for all
s,t € R. So{T; : t € R} is a group of transformations if. of course, restrictions discussed
above are valid.

In order to describe the laws of conservation, we have to introduce additional func-
tions. Let ¢ be a function on R? x R?. For any a € A, we define F : A — R?,(d =
1,2,---) by setting

Fa)= Y é(q.v).
(g,v)€a
We call this kind of F the (translation-invariant) first-order additive functional on the
realization space.
We give some examples of the additive functional.
Example 1.
Na)= Y 1, ¢(-)=1.

(g,v)€a

This is the total number of particles.
Example 2.
M(a) = Z v, ¢(q,v)=w.

(g,v)€a

This is the momentum of the system.

When F(a(t)) = const. for any initial realization a(0), we have a law of conservation.
So, in Example 1, it is the law of conservation of particles (or of the mass); in Example 2,
it is the law of conservation of momentum. These laws of conservation for the dynamical
system of finite particles are well-known from elementary courses in mechanics.

If ¢ is defined on (R? x R%) x (R? x R?), then

FZ(G)= Z d’(‘hal’lifhsz)a
(g,v1),(q2,v2)€a
is called an additive functional of second order. We will call this functional translation-
invariant if
(q1,v1;q2,v2) = (@1 — q2,v1,V2)-

We can also define a translation-invariant additive functional of any order like this.
The well-known law of conservation of energy can be described by the following
translation-invariant additive functional of second order.

1 :
E(a) = 5 Z v+ Z U(lgr — q2l)
~ (q,v)€a (q1,v1),(g2,v2)€a:q1 #q2

where U is the potential defined previously. For the case when collisions are possible it
is well known from mechanics that the laws of conservation of momentum and of energy
are true when the colliding of particles can be considered as elastic collisions.
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There exist non-translation-invariant laws of conservation. For example, the law of
conservation of central momentum

Fla)= Y [gv],

(q,v)€Ea

where [+, -] is the scalar product in Euclidean space. Such non-translation-invariant con-
servation laws are not essential for the problems concerning the foundation of statistical
mechanics.

There are some degenerate systems for which we have a lot of additional translation-
invariant laws of conservation. For example, this is the case if dimension d = 1 and

U(z) = ¢(shAz)™%;
and also the limiting case A — 0,c/A? — const with the potential
U(z) =cz ™2

Here we have an infinite system of non-trivial translation- invariant laws of conservation.

Another example gives the pure hard core potential for dimension d = 1. We call
the corresponding system as one of 1-dimensional hard rods. Here at the moment of
collision the two particles simply exchange their velocities. So for any function ¢(v) the

relation
Fyla)= Y 4(v)

(g,v)€a

gives a translation-invariant law of conservation.

An important hypothesis states that the desribed cases are only exceptional cases,
and (may be under some mild additional hypothesis of a general type) for all other
potentials there are no additional laws of conservation. Under some strong additional
conditions about potentials and functionals this important hypothesis has been proved
by [Gurevich, Suhov 1976, 1982].

The structure of additive functionals plays a very important role in the description
of the structure of equilibrium states. In both degenerated models described above the
last structure also has a special form, see §4 for hard rod system and see [Chulaevsky,
1983] for the system with potential cz 2.

We need to introduce other important properties of finite particle systems. For any
A € A, it follows from Liouville theorem that

AA)=NTA), t>0

where measure A(-) was defined in §1. So we have a dynamic system with an invariant
measure. The other property is time-reversibility. This means that

T_ia=(Twa")*, teR!, ac€ A,

where a = {(¢q,v)} — a* = {(¢,—v)}.



