FUNDAMENTALS
OF COMPUTING I

Lo aG k8
PROBLEM SOLVING
PROGRAMS
AND COMPUTERS

FUNDAMENTALS
OF COMPUTING I

L Q@ G I &
PROBLEM SOLVING
PROGRAMS
AND COMPUTERS

B B B B B ALLEN B. TUCKER

... ool s

W. JAMES BRADLEY

CALVIN COLLEGE

ROBERT D. CUPPER

ALLEGHENY COLLEGE

DAVID K. GARNICK

BOWDOIN COLLEGE

McGRAW-HILL, INC.

NEW YORK ST. LOUIS SAN FRANCISCO AUCKLAND BOGOTA CARACAS
LISBON LONDON MADRID MEXICO MILAN MONTREAL NEW DELHI
PARIS SANJUAN SINGAPORE ' SYDNEY TOKYO TORONTO

FUNDAMENTALS OF COMPUTING I: LOGIC, PROBLEM SOLVING,
PROGRAMS, AND COMPUTERS

Copyright © 1992 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

1234567890 DOCDOC 90987654321

ISBN 0-07-0b5449-2

This editor was Eric M. Munson;

the production supervisor was Anthony DiBartolomeo.
The cover was designed by Joseph Piliero.

R. R. Donnelley & Sons Company was printer and binder.

Library of Congress Cataloging-in-Publication Data

Fundamentals of computing / Allen B. Tucker-... [et al.].
p- cm. — (McGraw-Hill computer science series)
Includes bibliographical references and index.
Contents: v. 1. Logic, problem solving, programs, and computers.
ISBN 0-07-065449-2 (v. 1)
1. Electronic data processing. I. Tucker, Allen B. II. Series.
QA76.F815 1992
004—dc20 91-32782

ABOUT THE AUTHORS

Allen B. Tucker is Professor and Chair of the Computer Science Department at Bowdoin

College; he has held similar positions at Colgate University and Georgetown University.
He earned a BA in mathematics from Wesleyan University in 1963 and an MS and PhD in
computer science from Northwestern University in 1970. Professor Tucker is the author
or coauthor of several books and articles in the areas of programming languages, natural
language processing, and computer science education. He recently served on the ACM
Task Force on the Core of Computing and as co-chair of the ACM/IEEE—-CS Joint Curric-
ulum Task Force that developed the report Computing Curricula1991. He isa memberof
ACM, IEEE-CS, CPSR, and the Liberal Arts Computer Science Consortium (LACS).

W.James Bradley is Professor of Mathematics and Computer Science at Calvin College.
He graduated from MIT with a major in Mathematics in 1964 and completed a PhD in
Mathematics from the University of Rochesterin 1974. Professor Bradley also earned an
MS in Computer Science from the Rochester Institute of Technology in 1982. He has au-
thored papers in game theory and computer science curriculum, as well as an introductory
textin discrete mathematics. His current scholarly interests are in formal methods in deci-
sion making, database systems, ethical and social issues in computing, and computer sci-
ence education. Professor Bradley is a member of MAA, ACM, CPSR, and LACS.

Robert D. Cupper is Professor and Chair of the Department of Computer Science at Alleg-
heny College. He received a BS from Juniata College and a PhD from the University of
Piusburgh. At Allegheny, Professor Cupper developed one of the first computer science
major programs for a liberal arts college, a program that helped motivate the design of the
liberal arts model curriculum in 1986. He has been an active member of ACM for several
years, having served as chair of the Student Chapters Committee and as secretary-treasur-
er of the Special Interest Group on Computer Science Education (SIGCSE). Professor
Cupper has written and spoken on the economics of computing, curriculum development,
and program accreditation. He is a member of ACM and a co-founder of LACS.

David K. Garnick is Assistant Professor of Computer Science and Dana Faculty Fellow at
Bowdoin College. He earned a BA in philosophy at the University of Vermont and a PhD
in computer science at the University of Delaware in 1988. He has conducted research in
the area of programming language design for distributed computing, and his current work
and publications are in the area of heuristic algorithms and combinatorial optimization
problems. He also has interests and publications in curriculum design, with an emphasis
on the integration of writing throughout the curriculum. He is a member of ACM.

To Meg, Hope, Sandy, and Kathy

FOREWORD

What is the computing profession? Whatis the discipline of computing?

Our answers to these basic questions strongly influence our approaches to
the content of computing curricula, the mix between theory and practice,
our selection of research questions, our relations with other disciplines,
our responses to complaints, our practices of design, and much more.

When I investigated these questions with the ACM Task Force on the
Core of Computer Science beginning in 1986, I settled on definitions that
are now widely accepted: the computing profession is people who make
their livelihoods by working with computers and the phenomena sur-
rounding computers. The core phenomena include algorithms and data
structures, programming languages, architecture, numerical and symbolic
computation, operating systems, databases and information retrieval,
software methodology and engineering, artificial intelligence, and hu-
man—computer communication. These phenomena all concern represen-
tations of the world and efficient algorithmic transformations of those
representations — commonly called information processing. In Europe
the intellectual side of the profession is called “informatics” and in the
U.S.A. people are beginning to call it the “discipline of computing.”

By 1990 I had come to be profoundly dissatisfied with this definition.
It offered no guidance on the relation of my research and teaching to the
burgeoning world of people using computers in their daily work. It offered
no sense of permanence, leaving me with the nagging question of whether
the discipline is a fad that will one day be reabsorbed into applied mathe-
matics or electrical engineering. My dissatisfaction drew me into the
question, “What is a profession?”

Underlying every profession is a permanent domain of human concern
and human breakdown. By permanent, I mean concerns that affect every
human being throughout civilization. By breakdown, I mean events that
interrupt the normal flow of actions or work; these events may be the unan-
ticipated failure of some person or system to deliver an expected result,
or they may be the unexpected appearance of new challenges. The profes-
sion is the people, technologies, institutions, and practices for taking care
of people’s concerns and recurrent breakdowns in the domain.

Consider the medical profession as an example. Health is a permanent
concern of human beings. Breakdowns in health are inevitable because

XV

xvi FOREWORD

of disease, accident, or aging. Health care professionals take care of peo-
ple’s concerns and breakdowns in health and disease. Stethoscopes, X—
rays, MRI scanners, surgical tools, heart— lung machines, and pacemakers
are some of the technologies of the profession. Laboratories, hospitals,
HMOs, and medical schools are some of the institutions of this profession.
Licenses, basic texts, anatomy charts, and diagnostic and surgical proce-
dures are some of the standard practices of the profession.

The legal profession, another example, deals with people’s concerns and
recurrent breakdowns about laws. These concerns are inevitable and per-
manent because we all live in societies with governments, constitutions,
and laws. Lawyers, judges, and law enforcers are among the members of
this profession. They do their work within the technologies, institutions,
and standard practices of this profession.

Now consider our profession. Calculation and coordination of action
are ongoing concerns of all human beings. We livein a world of informa-
tion and numbers, much of which are processed by machines. We live in
a world with ubiquitous telephones, near—ubiquitous fax, and burgeoning
computer networks and databases, all of which permit extending the dis-
tance and time over which we can successfully coordinate actions. Nearly
everyone in every developed country is affected by telecommunications
and computers, which open up new business and political opportunities;
leaders in underdeveloped countries are considering informational infra-
structures as ways of accelerating their countries’ entries into world mar-
kets. Computation has become indispensable to the daily practices of
finance, engineering, design, science, and technology. Word processing,
accounting, database, design automation, and report writing software im-
pact every other profession. This world offers many new kinds of break-
downs, ranging from failures of computers and communications to the
challenge to install software that improves an organization’s productivity.
The computing profession, by analogy with other professions, is the peo-
ple, technologies, institutions, and standard practices that take care of peo-
ple’s concerns in the domain of information processing, computation, and
coordination over networks of computers.

These concerns are bigger than are implied by the phrase “phenomena
surrounding computers”. These concerns include, as is commonly under-
stood, the design and analysis of hardware and software to perform new
functions or to perform old functions in new ways. But these also include
the installation, configuration, and maintenance of computer systems
within organizations. They include standards for communication and in-
formation exchange. They include privacy and integrity of conversations,
files, and documents in networks of computers. They include working
with the customer to design computer systems that support the work of the
customer’s organization. They include the historical context of comput-
ing and communications, as well as the shared values of the people in the
professions that use computers and networks.

FOREWORD xvii

In other words, the concerns are not phenomena that surround comput-
ers. It is the other way around. The computers surround the concerns.

If computer scientists continue to talk in language focused on “phenom-
ena surrounding computers”, they will find themselves increasingly dis-
connected from the concerns people have about information processing
and communications. Those people will turn elsewhere to get the help they
need. There will be a computing profession, but it won’t include computer
scientists as an important and vital part.

There need be no incompatibility between computer science research
and people’s concerns for information processing and communication. In
fact, research is an essential part of every profession, for it is the practice
of anticipating future breakdowns and future opportunities. What’s miss-
ing is the skill of articulating the connection between research and peo-
ple’s concerns. In the medical profession, for example, there are plenty
of esoteric, highly technical projects without an immediate payback. If
one asks such a medical researcher why he’s doing what he’s doing, one
is likely to get an answer like this: “Even though this stuff is pretty techni-
cal and hard to understand, if it works we’ll one day be able to cure Altz-
heimer’s disease.” A computer science researcher might respond with,
“I’m studying this because it is considered to be an open question among
computer scientists.” With such an answer it is no wonder that outsiders
look elsewhere for the help they seek, and that the computer science re-
searcher is left wondering whether anyone is interested.

This book is a sharp break with the tradition of treating the discipline of

computing merely as a study of phenomena surrounding computers. Its
authors offer an introduction not just to the discipline, but to the profes-
sion. There are three distinguishing aspects of this book.

First, throughout the book, the authors maintain awareness of the con-
nection between the technologies of programming, machines, and net-
works and the human concerns that animate these technologies.

Second, the authors distinguish between theory and practice. They hold
that both are essential for a professional computer scientist. The main text
emphasizes the theory while the laboratory emphasizes the corresponding
practices. Students who emerge from this form of study will find them-
selves with a great deal more practical competence than their colleagues
who study under the traditional, theory—oriented curriculum. The re-
newed interest in practice does not detract from the ri gor of the discipline.
The authors advocate the formalisms and rigorous thinking needed to un-
derpin the practices of good programmin gand design, and they boldly dis-
cuss the laws and professional standards that define the environment in
which students of the discipline will one day work.

xviii FOREWORD

Third, the authors bring to clear view the three paradigms of thought
that constitute the discipline: theory, abstraction, and design. The theory
paradigm is rooted in the long tradition of mathematics and logic, whose
legacy enables us to deal with complex and subtle algorithms. The ab-
straction paradigm is rooted in the long tradition of the scientific method,
whose legacy enables us to formulate and test hypotheses about algo-
rithms, machines, and models. The design paradigm is rooted in the long
tradition of engineering, whose legacy enables us to design machines that
calculate accurately and process information in all domains of human
work. The authors argue that the professional computer scientist must be-
come competent in all three modes of thought. We can, at last, put aside
the debates of which tradition is the most fundamental and revel in the real-
ization that our profession is a unique combination of the three.

Other authors may improve on what Tucker, Bradley, Cupper, and Gar-
nick offer here. But those future authors will be followers of these four
pioneers in the new approach to computing as a discipline and a profes-
sion.

Peter J. Denning

PREFACE

The traditional introductory-level undergraduate courses in computer sci-
ence and computer engineering (known simply as the discipline of com-
puting) have received serious scrutiny over the past few years. These
courses have been criticized for establishing the false notion that computer
science = programming, thus leaving students with an inadequate view of
the richness of the discipline. Many educators agree that we need serious
changes in the way we organize and teach these courses.

This text, together with its accompanying laboratory manual and
software tools, is the first in a four-volume series that aims to address this
problem. This series presents the fundamental aspects of the discipline in
adistinctive way; it uses an approach to the introductory curriculum that is
often called the “breadth-first approach.”

Overview of the Series Fundamentals of Computing is a series of four
texts and accompanying laboratory manuals that provide the basis for a
four-semester breadth-first introduction to the discipline of computing.
This series is motivated by both the comprehensive definition of the disci-
pline and the pedagogical principles developed in the reports Computing
as a Discipline' and Computing Curricula 1991.2 This introduction to the
discipline has the following themes:

1. A broad treatment of the nine major subject areas of the disci-
pline

2. A grounding in the mathematical, scientific, and engineering
points of view on the discipline, known as theory, abstraction,
and design, respectively

3. A responsible treatment of key social, ethical, and legal issues
that uniquely concern the discipline and the profession

4. A scheduled weekly laboratory experience, with separate ac-
companying laboratory manuals and software tools

5. A carefully developed methodology for algorithmic problem
solving (MAPS)

The major subject areas of computing are:

Algorithms and data structures
Architecture
Artificial intelligence and robotics

Xix

XX PREFACE

Database and information retrieval
Human-computer communication
Numerical and symbolic computation
Operating systems

Programming languages

Social, ethical, and professional issues
Software methodology and engineering

The four volumes in this FUNDAMENTALS OF COMPUTING series are
titled

Volume I: Logic, Problem Solving, Programs, and Computers

Volume II: Abstraction, Data Structures, and Large Software
Systems

Volume III: Levels of Architecture, Languages, and Applications

Volume IV: Algorithms, Concurrency, and the Limits of
Computation

In addition to its comprehensive treatment of the discipline, this series pro-
vides another important dimension for the introductory courses: an option
to integrate the topics of discrete mathematics with those subjects in com-
puting where they are used. While this series does not require discrete
mathematics to be integrated in all courses that use it, many instructors
will choose to include that material directly in those courses. Such a
choice is mainly justified on the grounds that students can understand
more clearly the fundamental mathematical dimensions of the discipline
than they would if these topics were taught in a separate discrete mathe-
matics course.

A more complete discussion of the entire series and its aims can be
found in the 3publication, “A Breadth-First Introductory Curriculum in
Computing.”

Overview of this Text This text, along with its accompanying laborato-
ry manual and software, is designed to cover an introductory course in
computing, customarily known as CS1 and recently identified as C101 in
the Report Computing Curricula 1991. These materials were first clas-
sroom-tested at Allegheny College and Bowdoin College during the
19901991 academic year. Following a round of revisions, they are cur-
rently in use again at Allegheny and Bowdoin, and are being classroom-
tested for the first time at West Chester University and the University of
Connecticut.

PREFACE xxi

The content and organization of this text provide a broader view of
computers, programs, problem solving, and their underlying theory than
does the traditional approach to the first course. The integrated laboratory
experience provides a rich experience in programming and problem solv-
ing, as in a traditional course. The laboratory component also provides
hands-on experience with a von Neumann machine architecture and as-
sembler by way of a simple simulator called MARINA.

The text has nine chapters and is organized for a one-semester course.
Chapter 1 is brief and motivational in nature, concentrating on fundamen-
tal aspects of the history and nature of computing and its relationship to
society. Chapters 2 and 3 cover topics of theory in the discipline—sets,
functions, and an introduction to logic. These topics underlie two major
areas in the discipline, software methodology and architecture.

Chapters 4 through 6 develop fundamental principles of software
methodology, using preconditions and postconditions for precise specifi-
cation, problem solving, and program testing and verification. MAPS, a
methodology for algorithmic problem solving, is developed and illus-
trated. Functions and logic provide fundamental support for these activi-
ties. The principle of software reuse is also introduced here, throu gh the
notion of aroutine. Techniques of proof that were introduced in Chapter 3
are reinforced here, as students see its use in the verification of simple pro-
grams. Though theory is utilized in these chapters, their main purpose is to
introduce students to the processes of abstraction and desi gn—developing
and exercising computational models of algorithmic problems using the
MAPS methodology.

Chapter 7 reveals the strong influence of logic in an entirely different
area of the discipline of computing—architecture. The chapter introduces
principles of logic design and machine organization, so that students ulti-
mately see the interconnection between the Pascal programs that they de-
veloped earlier in the course and the computers that execute these
programs. The main focus of this chapter is on the process of design as it
influences the architecture and functional characteristics of contemporary
computers.

Chapter 8 takes an entirely different point of view toward the disci-
pline. Itdiscusses two important aspects of the social context of the com-
puting discipline—intellectual property and risks and liabilities. At this
point, students are familiar enou gh with the ideas of software, correctness,
error detection and correction, and architecture to think constructively
about these fundamental contemporary issues.

Finally, Chapter 9 provides a broader overview of the remainin g
areas in the discipline of computing. It discusses the areas of algorithms
and data structures, numerical and symbolic computation, operating sys-
tems, database and information retrieval, artificial intelligence and robot-
ics, and human-computer communication. It also presents some of the
broad professional aspects of the computing discipline. Thus, students

xxii PREFACE

confront subjects that they are likely to encounter if they decide to major or
minor in computer science or computer engineering.

It is important to note that this text can be used independently of Vol-
umes II through IV. That is, the quality and range of its subject matter will
provide excellent preparation for later courses in the curriculum, whether
those courses have the organization of Volumes II-IV or more convention-
al course organizations. Finally, this text can also be used to introduce
nonmajors to the discipline of computing in the setting of a service course.
More discussion of these alternatives is given below.

Course Organization—The Integrated Breadth-First Path When
classroom-tested in a 14-week one-semester introductory course, the top-
ics in this text were covered as shown in the table below. We identify this
particular path through the text as the Integrated Breadth-First Path. The
weekly schedule required 3 hours of lectures and a separate 1-hour coordi-
nated laboratory period. The laboratory itself can be equipped either with
IBM PC (compatible) computers running Turbo Pascal or with Macintosh
computers running THINK Pascal. Other configurations that support
standard Pascal can also be used. Nevertheless, the instructor should pre-
pare for 4 scheduled hours of student contact per week rather than 3.

Text Coordinated
Week Topics Chapters Homework
1 History of computing, review of functions 1,2 Exercises,
and sets, finite series chapter 2
2-3 Introduction to logic, equivalences, quanti- 3 Exercises,
fiers, methods of reasoning and proof chapter 3
4 Introduction to algorithmic problems and 4

their solutions; specifications

5-6 Methodology for algorithmic problem solv- 5
ing (MAPS); routines, libraries, and reuse

7-9 Using MAPS to solve text and graphics 6 Exercises,
problems; correctness, testing, verification chapter 6

10-12 Logic, circuits, and computer organization; 7 Exercises,
machine language and assembly language chapter 7

13-14 Social issues; software as intellectual prop- 8,9 Short paper

erty; overview of the discipline

From our experience, an ideal laboratory size would have 20 or fewer
students, with at least one computer for every two students; it is often pref-

FOREWORLY | o onn i g i v

PREFARICE v o chinie s dis orw s 450 5

CONTENTS

.....................

.....................

CHAPTER 1: COMPUTING AS A HUMAN ENTERPRISE

1.1 A BRIEF HISTORY OF COMPUTING

...........................

1.2 THEORY, ABSTRACTION,ANDDESIGNc.ouvunon. ..
1.3 THE NINE SUBJECT AREAS OF COMPUTING
1.4 COMPUTING AND DAILY LIFE: A “COOK BOOK” EXAMPLE

15 SUMMIARY = . . o i
EXCTCISOSRIMEN o LB e 4 a2 0 Lok o\l oks B 30 11

CHAPTER 2: SETS AND FUNCTIONS
2o SEEERG R L8 N e e e B
2.1.1 SetRelationships: Venn Diagrams . . .
2.1.2 Variables, Types, and States
2.1.3 SetOperations
2.14 Propertics of Set Operations
2:1.5 Setsiof Strings’ i
)25 G el I bl S

2.2)1° VBasic@encepts ..t o L hen L
2.2.2 Continuous and Discrete Functions . .

.....................

............................

............................

............................

............................

............................

2.2.3 Alernative Ways of Defining Functions

EXCTCISCSRMNT L Ry e L s
2.24 One-to-one Functions and Inverses . .

2.2.5 Boolean, Integer, Exponential, and Logarithmic Functions

EXerCISeS I Ene i (NI i SR

CHAPTER 340G ..v0 ool o0t i

3.1 PROPOSITIONAL LOGIC

............................

............................

.....................

3.1.1 Representing English Statements Using Propositional Logic

3.1.2 Evaluating Propositions: Truth Values

XV

Xix

11
12
14
15

17
18
19
20
23
26
27
29
31
33
34
36
38
40
44
48
49
54
54

57
57

63

X CONTENTS

3153 ETaARIDIOTIES St . ol o tei s o sia oty diais, s i ot oisln b ts/d o s siola bl atate alola 67
EXercisesBommes a5 Sl et b S b bl o e et il 69
32 REASONING WITHPROPOSITIONSccititiiiiirnnnnnennnnnn 70
321 EQUIVAIEIICE - - oo sieooaosonaaseiniosonosesioissssiseasbsiaose 71
322 PropertiesOf EQUIVAIENCEovevuneeetinieinnterneionansos 72
323 Rulesof Inference: The Idea of Proofccecncsesccnoensonassn 75
B A PIOON SITAIETICS 11 sk oo e!s biiateretoiors o sy oaiel oo oo ool bk 8 w1ash o e oisreke kofel 78
325 Solving WOrd Problemsosebiennes s sinssasisee o 82
I SR Rl O e it b o e taii) 414 o s S onteae el oty MR, VR 84
33N PREDICATEIEONGTE 1. &k ¢ altve s te 5 o5 i 8 s sl o s 61 6163 a3tk ok o ot i 87
3.3.1 The Universal and Existential Quantifierscoovunn 90
23 2 N RurthetOBANUETICTS ™ 1. & . « o i 5 s e s b sob oo St s e o ten ot 94
333 Frecand Bound Variables i ovios s e i oisslsinis aledinld soeaiaisioss a8 95
34 PREDICATES ANDPROGRAMS | ...« s s sisiseoraatsins s srets lokrsfiie (o 5 95
314:1 S TheiSiate 0f AlCOMPUIALION 5o ofts s« 2108 o la cis a8 SMaterin o oty etee rdia i 96
342 Quantifiers and Programming: LOOPS . ..« viesien v svissivisianiois s 96
XTI s SN o e olare o s tar o ol o) shosbailatas sl s s ot aberis %, ivarsvissina lote (aknd 98
3.5 REASONING WITH PREDICATES: PROOF BY INDUCTION 100
LS O 0N S 6 s St Rt e & i Bl Bl s o Sy PR S g 106
BT S v, poo AL L el | ol S el SN 2 o W, et s 106

CHAPTER 4. ALGORITHMIC PROBLEMS

ANDEFEIEIR SOLEUMIONS . & v s v e aieaim e s ot shiie srsisds 109

4.1 ALGORITHMS ANDPROBLEMSciiiiiiiiiiiiennennennnn 110
X CTCINE s o <l Tttt 2 & aha v 1o s o L S s b e iealatier o 113
4.2 PROBLEM DEFINITION AND ALGORITHM DESCRIPTION 113
42.1 The Initial and Final States of an Algorithm: Input and Output 114
422 The Intermediate States of a Computation: Introducing Variables 1S
e S S e R s ot o athy i e o o e AN U e ol b e st 118
43 ALGORITHMICLANGUAGEiitiiritmeenetnaeanaaannnn 118
43T SRS yRIAXand SeMANTICSE - 152 215 e s = 0 <oshs s aistals ohals s sis o wke ey ooty 121
432 TIteration and Loops: Initialization, Invariance, Termination 123
4.3.3 Three Views of the Same Problem Solution 129
PRSBSOS S S R e e 131
44 MORE ALGORITHMICPROBLEMScciuiiiiiiininnnnennnnns 133
LT T R A e N e 133
442 Counting WordsinaTeXteesereoonscassoceneseasssnns 137
443 Monitoringa Tic-Tac-Toe Gameccviuereniennenienrenns 142
X CTEIRES e i vs z e i s v s e 0 5 SiaiisloLs o o #csrars o iolmleysl o Sraln s ot Sl et ot b ke 147
72D U U G b0 2 T O R e et [=[S AT DR P A 150
.CHAPTER 5: SOLVING ALGORITHMIC PROBLEMS 1153

SHEEWEINEEDIASMBTHOBRDOLOGY . . o o voe ool s oie aiiosisisionlaress 153

CONTENTS

5.1.1 Overview of the MAPS Methodologyccviiuiivinennnnn.
5.2 DEVELOPING SOFTWARE FOR REUSE: THE ROUTINE
5.2.1 Encapsulating Routines for Reuse: Procedural Abstraction
5.2.2 Identifying New Routines and Defining Their Abstractions
5.2.3 Recursive Functions: An Alternative to Iteration
5.24 Learning About Existing Routines: Libraries and Language Features ...
5.2.5 Selection and Reuse of Data Types and Structures
3206 AT SIOBS IS 705 it o i hts Ts o s o o et oo TR AL e (o AL TN Lo S
52.7 = iStrong TypingandiCoercion /. o -+« kb oi e EER S aiERas o
EXCICIRES M. o il b el L, s el e e)il AL e
53 A CASE STUDY IN PROBLEM SOLVING USING MAPS
Si3 P ITHEIDIAlOTUC .72 b % 1 erols e for oo oD tls o e oo TR a0 gt e e SR
5.3:2. “The Speetfications /s, . .« o0 s U i ALl S b o o e
SESBIRNThEIBrealOWIN & =< v 1 ah dhithis i fo Rt b Tt eabers T o o0 DL BRSPS
X CTC SRR i e e, toturt e v e o o i S R T o W e

54 DEFINING ABSTRACTIONS:
UNITING OLD ROUTINES WITHNEW IDEAS

S SREUSINPROUMNES &, 0 0 0 o 2o o el ot s o olsiie & b eeis o 5ot heista e s
5.4.2 Using Creativity to Design NewRoutines
5.4.3 Using Domain Knowledge to Design New Routines
5.5 \COMPLETING'THE CASE STUDY . . Lottt hlotanstoto & obiatsrarsls s
SNERGORINe (et oo LR e e L st
5152 Flestng and VERFICRUON. & oo s s o Fmdsie bin sl s s v oo s arens soreratoniat 4/ s
S BEBIESCNTARONIE . (it 1 & oo 5t el o o o bs el et sy 8 Ll iR B
STGRES EINVINUARIYEI, oo o e sl il oS Lol s T i o o
BXCICISES Iha - ke e o Vot T onc . L Sl o DGR e S T O o

CHAPTER 6: ALGORITHM ROBUSTNESS AND TESTING ...
6.1 CORRECTNESS AND ROBUSTNESSititetteininennnnnnns
S Ol L e, T o MO S gL S R Lt el ST R e

6.2 SOLVING TEXT PROCESSING PROBLEMS WITH MAPS:
GRYMBTIOGRABHNY Y., o Sl L) s iSRS £ SR L T

6.3 SOLVING GRAPHICS PROBLEMS WITH MAPS:
FHEAGAMEORIEIEE: - % .l ek o o e e . s e)

EXCretse Rt MMl |5 e T] s ote d ese ol Sl ot o e KERRER

6.4.1 Example: Testing a Complete Procedure or Function
6.4.2 Example: Testinga Complete Programccouu...
6.5 ENSURING CORRECTNESS: PROGRAM VERIFICATION
6:5: 1N The BroofiTableautt .2 .. AL 0w r o . L LEARERIEIANE ol S e
6.5.2 The AssignmentRuleofInferencecovvveeeinunnnnnn
6.5.3 Reusing the Rules of Inference from Logiccoouuun...
6.54 RulesforConditionalscooiiiiiieinnneneennnnnnnnn.
Feke) O TS LT oL e S SO L SR I R o B

xii CONTENTS

6.5.6 Formal Versus Informal Program Verification 237
66 ISTINENVIARY vt sres o 5155 o latshe uatis o st sis) ok, BSAIT o shatol sFaabersi{olols (sfererlolhlo 238
Excreiscs e et CglE] Gl ok s e e SIS e e e B 239

CHAPTER 7: COMPUTER REALIZATION OF ALGORITHMS 241

7.1 OVERVIEW OF COMPUTER ORGANIZATIONc.o.... 242
TLANEIDDUE S - 5055 = o Srwieriish siatageiapatares stoksjdysiohe) s ks asoepataysmensinte i) shs foscii i 243
o R 1o T ot S R S D 8 e e i g oG 243
1 3 S TIHE RTOCESSONS o ¢ s 5 st s oot olebsbd i 26 1o o Ra bR ST Rl e fosce i bR o pediyis b 243
TR (DT A A R i SRR TN & e R A e - AT 245
702 INUNMBER SYISTEMSH: 5. Saniaid: 0 50 0 i S lie nl s o A it e 246
EXGrcinesiie .= GBIl L, B Lol S, o SRR RIS S s R 2 249
7.3 REPRESENTATION OF INFORMATION IN A COMPUTER 250
s b O G R G e A SR e e S SR PR 250
TR0 - S e S S R A b e S L S SRR T 251
7:3.3\ thiternal Representation of Gharacters . .o i hkiosaishs il bl . 254
N ETCISES IR DRl e e A SRR b DR SRR T R AT TR 255
NI N RO 0 e i o s e el e e LI, SRS 256
7i4.1- = NMemory @rganization’ « G8a 0 W SRS S IR R 256
(4.2 S Storageimplementationy. . - ML LA R R SR N TN L 258
7:50 S THEARTFHMETIC-EOGICTINITo ieiva sl dinhe sl sadhii sl s 262
S MINRMIRE S ter PRI PR b o S et h i U o o s et toio oo o St GRS 20 265
5. 2 GheratonallUn s hk 1 sr b Lol woae it SISHBARESTL L NN 267
7S BRIDCSTTINOIANUNGACT (5 7k Lot st s R R o SRS R Rl o 272
H o A S B AotIORT I e d ke i inlE o) SO Sl e TR 274
7.5.5 Combining the Operational Units to Makean ALU 280
JB50 7 S A L A ot oo s (o SRR IR I T S e T 282
7.6, LIHEICONIRGIDIEINIT = . oo T, o o e e iy e e lls ol e sl 282
7:6:1% Programs and INSICHONS /s v o ofs-vs it ossia s 55 0t sbn'sissals o 4 s acalsuidle kol elums 283
726 2 e SUCHOMNGE e e o e s e Tl i I B L e e 287
TR LR T O Ayt g NI e i LN b e | i e e O e i e 289
7:6:4 S ProcesSIngUINSITUCTIONS | v s fohan e, s ois oxe s oaishelsisiorttais 4.s-emaainssboiishesere s 292
7:6.5 BT TUAHTORCHIET : & s t1c 6 wviels s st oo slntitatapos e oltissre et s iolors 297
1B R S i o I o GRS T W A RO A [299
770 MARINA: ASSTMULATED COMPUTER . o iiid il e it i sinia oo e 299
e TAANTARIINATSIVICITIOGY '+ o 1o & 40 515 bass o vi5 derarevsdewrasth Aot s, 37 s o3 8 fukarseido ot 302
T2 NTARINASIREISIOIS .1 . 2 L he o e S e s U5, ol e s 303
7.7.3 s MARINA'SINSEUCHONFEOINAL {5 510 ¢ o%/a s slorb sle o b0t sl ini sts s jallo el d1o belaia i » 303
A A SSE MDY TEANGIIATE . o5 oo s s o 5l sde e ol T ka1 siabnie S g b (o 306
7.7.5 Assembly Language Data and Variable Declarations 309
25T va T AT R e e e SR S O ST C Iy N T RN 312

TS RSUNINMARNYIE = 5 28 L i sl 5 us e sms i mbistelat iy sub anbion o s 314

