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Saint-Flour Probability Summer School

The Saint-Flour volumes are reflections of the courses given at the Saint-Flour
Probability Summer School. Founded in 1971, this school is organised every
year by the Laboratoire de Mathématiques (CNRS and Université Blaise Pascal,
Clermont-Ferrand, France). It is intended for PhD students, teachers and
researchers who are interested in probability theory, statistics, and in their
applications.

The duration of each school is 13 days (it was 17 days up to 2005), and up to
70 participants can attend it. The aim is to provide, in three high-level courses, a
comprehensive study of some fields in probability theory or Statistics. The lec-
turers are chosen by an international scientific board. The participants themselves
also have the opportunity to give short lectures about their research work.

Participants are lodged and work in the same building, a former seminary built in
the 18th century in the city of Saint-Flour, at an altitude of goo m. The pleasant
surroundings facilitate scientific discussion and exchange.

The Saint-Flour Probability Summer School is supported by:

— Université Blaise Pascal
— Centre National de la Recherche Scientifique (C.N.R.S.)
— Ministere délégué a I’Enseignement supérieur et a la Recherche

For more information, see back pages of the book and
http://math.univ-bpclermont.fr/stflour/

Jean Picard

Summer School Chairman
Laboratoire de Mathématiques
Université Blaise Pascal
63177 Aubiere Cedex

France




Foreword

I am ashamed to say that my first visit to the annual summer school at Saint
Flour was to give the lectures recorded in the pages to follow. The attentive
and supportive audience made the opportunity into a true privilege. I am
grateful for the opportunity, to Jean Picard and his team for their considerable
efforts and the audiences for their interest and patience.

I had been very busy in the weeks before the lectures and came equipped
with a detailed outline and bibliography and a new tablet PC. Unlike my
well-organised co-authors, who came with their printed notes, I wrote the
detailed lecture notes as I went. Jean Picard, with his inevitable charm, tact
and organisational skill, brought to the very rural setting of St Flour, a fast
laser printer and every night there was a long period printing off and stapling
the notes for the next days lecture (60 times over, as there was no Xerox
machine!).

The notes were, in the main, hand-written on the tablet PC, supplemented
by a substantial set of preprints and publications for the improvised library.
This worked adequately and also provided some amusement for the audience:
the computer placed a time stamp on each page permitting the audience to see
which pages were written at 2.00 am and how long each page (that survived)
took to write. Writing ten 90-min lectures in two weeks was a demanding but
enjoyable task. B

Two members of the meeting, Michael Caruana, and Thierry Lévy offered
to convert the notes into the form you find here. They have taken my presen-
tation to pieces, looked at it afresh, and produced a version that is cleaner and
more coherent than I ever could have managed or imagined. I do not know
how to express my gratitude. The original hand-written notes are, at the time
of writing, to be found at:
http://sag.maths.ox.ac.uk/tlyons/st_flour/index.htm

The goal of these notes is to provide a straightforward and self-supporting
but minimalist account of the key results forming the foundation of the theory
of rough paths. The proofs are similar to those in the existing literature, but
have been refined with the benefit of hindsight. We hope that the overall
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presentation optimises transparency and provides an accessible entry point
into the theory without side distractions. The key result (the convergence of
Picard Iteration and the universal limit theorem) has a proof that is signifi-
cantly more transparent than in the original papers.

We hope they provide a brief and reasonably motivated account of rough
paths that would equip one to study the published work in the area or one of
the books that have or are about to appear on the topic.

Mathematical Goal

The theory of rough paths aims to create the appropriate mathematical frame-
work for expressing the relationships between evolving systems, by extending
classical calculus to the natural models for noisy evolving systems, which are
often far from differentiable.

A rather simple idea works; differential equations obviously have meaning
when used to couple smoothly evolving systems. If one could find metrics on
smooth paths for which these couplings were uniformly continuous, then one
could complete the space. The completions of the space of smooth paths are
not complicated or too abstract and considering these spaces of “generalised
paths” as the key spaces where evolving systems can be defined, modelled
and studied seems fruitful. This approach has a number of applications, a few
of which are mentioned in the notes. But the minimalistic approach we have
set ourselves means we limit such discussion severely — the applications seem
to still be developing and quite distinctive so we would commit the reader
into much extra work and defeat the overall goal of this text. In Saint Flour
it was natural to give probabilistic applications. The hand-written notes give
the first presentation of a proof for a quite precise extension of the support
theorem not reproduced here.

In 1936 Young introduced an extension to Stieltjes integration which app-
lies to paths of p-variation less than 2. In a separate line of development,
Chen (1957, geometry) and more recently Fliess (control theory), E. Platen
(stochastic differential equations) and many others were lead to consider the
sequence of iterated integrals of a path z in order to obtain a pathwise Taylor
series of arbitrary order for the solution y to the vector equation

dyr = f(ye) dxy.

These notes develop the non-commutative analysis required to integrate these
two developments into the theory of rough paths, a mathematical framework
for modelling the interaction between evolving systems.

Oxford, March 2006 Terry J. Lyons



Introduction

These notes put on record a series of ten lectures delivered by Terry Lyons
at the Saint Flour summer school in July 2004. Terry Lyons’s declared pur-
pose was to bring the audience to the central result of the theory of rough
paths along the straightest possible path. These notes, which follow closely
the content of the lectures, are thus primarily intended for a reader who has
never been exposed to the theory of rough paths. This introduction gives an
overview of the subject and presents the content of each chapter, especially
the first three, in some detail.

The theory of rough paths can be briefly described as a non-linear exten-
sion of the classical theory of controlled differential equations which is robust
enough to allow a deterministic treatment of stochastic differential equations,
or even controlled differential equations driven by much rougher signals than
semi-martingales.

Let us first explain what a controlled differential equation is. In a setting
where everything is differentiable, it is a differential equation of the form

Y, = F(X.,Y:), Yo=E¢, (1)

where X is a given function, £ is an initial condition, and Y is the unknown.
The mapping F' is taken to be linear with respect to its first variable. If F
did not depend on its first variable, this would be the most general first-order
time-homogeneous differential equation. The function F would be a vector
field and Y would be the integral curve of this vector field starting at &.
If now we had Y; = F(t,Y;) instead of (1), this would be the most general
first-order time-inhomogeneous differential equation. The solution Y would be
an integral curve of the time-dependent vector field F'. Equation (1) is really
of this kind, except that the time-inhomogeneity has been made explicitly
dependent on a path X, which is said to control the equation. The physical
meaning of (1) is the following: at each time, Y describes the state of a complex
system (for instance the brain, or a car) and it evolves as a function of its
present state and the infinitesimal variation of an external parameter (like the
air pressure near the ears or the angle of the steering wheel).
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Stochastic differential equations are of the form (1), except that X is
usually far from being differentiable. They are often written under the form

dY, = f(V2) dXy, Yo =¢, (2)

which emphasises the linear dependence of the right-hand side with respect
to dX;. K. Ito, in introducing the concept of strong solution, emphasised
the fact that the resolution of a stochastic differential equation amounts to
the construction of a mapping between spaces of paths. For this reason, when
the (deterministic) equation (2) admits a unique solution, we denote this
solution by Y = I¢(X, &), and we call I the Ité6 map associated with f.

The classical theory of differential equations tells us that if f is Lipschitz
continuous, then (2) admits a unique solution as soon as X has bounded
variation and this solution has bounded variation. Moreover, the Ito map I
is continuous as a mapping between spaces of paths with bounded variation.
The fundamental results of the theory of rough paths resolve the following
two problems:

1. Identify a natural family of metrics on the space of paths with bounded
variation such that the Ito map X +— I;(X,§) is uniformly continuous
with respect to these metrics, at least when f is regular enough.

2. Describe concretely the completion of the space of paths with bounded
variation with respect to these metrics.

Let us give the solutions in a very condensed form. In the simplest setting, the
appropriate metrics depend on a real parameter p € [1,+00) and two paths
are close in the so-called p-variation metric if they are close in p-variation
(a parameter-independent version of %—H(’)ldcr norm), as well as their first
|p] iterated integrals. An element of the completion of the space of paths
with bounded variation on some interval [0, 7] with respect to the p-variation
metric is called a rough path and consists in the data, for each sub-interval
[s,t] of [0,T], of |p| tensors - the first of which is the increment x; — x
of some continuous path x — which summarise the behaviour of this rough
path on [s,t] in an efficient way, as far as controlled differential equations are
concerned. This collection of tensors must satisfy some algebraic consistency
relations and some analytic conditions similar to %-Hélder continuity.

The theorem which is proved in Chap. 5 of these notes states, under appro-
priate hypotheses, the existence and uniqueness of the solution of a differential
equation controlled by a rough path.

It is worth noting that if the control X takes its values in a one-dimensional
space, then the theory of rough paths becomes somehow trivial. Indeed, pro-
vided f is continuous, the It6 map is continuous with respect to the topology
of uniform convergence and extends to the space of all continuous controls.
The theory of rough paths is thus meaningful for multi-dimensional controls.

The coexistence of algebraic and analytic aspects in the definition of rough
paths makes it somewhat difficult at first to get a general picture of the theory.
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Chapters 1 and 2 of these notes present separately the main analytical and
algebraic features of rough paths.

Chapter 1 is devoted to the concept of p-variation of a Banach-valued
continuous function on an interval. Given a Banach space V' and a real number
p > 1, a continuous function X : [0,7] — V is said to have finite p-variation if

supZ|X,,+, = X, P < o0,
D

where the supremum is taken over all subdivisions D of [0, 7. This is equiv-
alent to the fact that X can be reparametrised as a %}-H(’il(ler continuous
function.

The central result of this chapter states that the classical Stieltjes inte-
gral [(: Y, dX,. defined when Y is continuous and X has bounded variation,
has an extension to the case where X and Y have finite p- and g-variation,
respectively, provided p~! + ¢=! > 1. Moreover, in this case, the integral, as
a function of ¢, has finite p-variation, like X. This was discovered by Young
around 1930 and allows one to make sense of and even, if f is regular enough,
to solve (2) when X has finite p-variation for p < 2.

On the other hand, if X is a real-valued path with finite p-variation for
p > 2, then in general the Riemann sums ) X; (X;,,, — X;,) fail to converge
as the mesh of the subdivision tends to 0 and one cannot anymore define
fuf X, dX,. One could think that this threshold at p = 2 is due to some
weakness of the Young integral, but this is not the case. A simple and very
concrete example shows that the mapping which to a path X = (X, Xy) :
[0, T] — R? with bounded variation associates the real number

1 T
"2" / Xl.u dX2.u - ‘YZ.U (l)(l.u (3)
J0

is not continuous in p-variation for p > 2.

The number defined by (3) is not just a funny counter-example. Firstly,
it has a very natural geometric interpretation as the area enclosed by the
curve X. Secondly, it is not very difficult to write it as the final value of the
solution of a differential equation controlled by X, with a very regular, indeed
a polynomial vector field f. So, even with a polynomial vector field, two paths
which are close in p-variation for p > 2 do not determine close responses in
the controlled equation (2). This is a first hint at the fact that it is natural to
declare two paths with finite p-variation for p > 2 close to each other only if
their difference has a small total p-variation and the areas that they determine
are close.

It is interesting to note that stochastic differential equations stand just
above this threshold p = 2. Indeed, almost surely Brownian paths have infi-
nite two-variation and finite p-variation for every p > 2. The convergence in
probability of the Riemann sums for stochastic integrals is, from the point
of view of the Young integral, a miracle due to the very special stochastic
structure of Brownian motion and the subtle cancellations it implies.
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The quantity (3) has a sense as a stochastic integral when X is a Brownian
motion: it is the Lévy area of X. It was conjectured by H. Follmer that all
SDEs driven by a Brownian motion can be solved at once, i.e. outside a
single negligible set, once one has chosen a version of the Lévy area of this
Brownian motion. The theory of rough paths gives a rigourous framework for
this conjecture and proves it.

Chapter 2 explores the idea that (3) is the first of an infinite sequence of
quantities which are canonically associated to a path with bounded variation
in a Banach space. These quantities are the iterated integrals of the path.
Let V be a Banach space. Let X : [0,7] — V be a path with bounded
variation. For every integer n > 1, and every (s,t) such that 0 < s <t < T,
the nth iterated integral of X over [s.t] is the tensor of V" defined by

= / dXy, ®...0dX,,. (4)
BEULC o Uiy

When V is R?, (3) is just the antisymmetric part of X2 .. The zeroth iterated
integral is simply X?, =1€ R=V®°,

The importance of iterated integrals has been recognised by geometers, in
particular K.T. Chen, a long time ago. In the context of controlled differential
equations, their importance is most strikingly illustrated by the case of linear
equations. Linear equations are those of the form (2) where the vector field
f depends linearly on Y. When the control X has bounded variation, the
resolution of the equation by Picard iteration leads to an expression of the
solution Y as the sum of an infinite series of the form

Yo= > Xy, | Yo, (

n=0

(2]
~

where f" is an operator depending on f and n and whose norm grows at most
geometrically with n. It is not hard to check that the norm of the iterated
integral X', of X decays like # Thus, the series (5) converges extremely
fast. In typical numerical applications, a dozen of terms of the series suffice
to provide an excellent approximation of the solution. What is even better is
the following: once a dozen of iterated integrals of X have been stored on a
computer, i.e. around d'? numbers if d is the dimension of V, it is possible to
solve numerically very accurately any linear differential equation controlled
by X with very little extra computation. The numerical error can be bounded
by a simple function of the norm of the vector field.

The iterated integrals of X over an interval [s, {] are thus extremely efficient
statistics of X, in the sense that they determine very accurately the response
of any linear system driven by X. It is in fact possible to understand exactly
what it means geometrically for two paths with bounded variation and with
the same origin to have the same iterated integrals: it means that they differ
by a tree-like path. We state this result precisely in the notes, but do not
include its proof.
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However satisfying the results above are: one is missing something essential
about iterated integrals until one considers them all as a single object. This
object is called the signature of the path. More precisely, with the notation
used in (4), the signature of X over the interval [s, ] is the infinite sequence
inR&V d VP @ ... defined as follows:

S(X)er = (1, XL, X2,,..). (6)

" is called the extended tensor algebra

The infinite sequence space &,V
of V and it is denoted by T'((V)). It is indeed an algebra for the multiplication
induced by the tensor product. The reader not familiar with this kind of
algebraic structures should keep the following dictionary in mind. Assume
that V has finite dimension d and choose a basis (vg...., vg) of V. Then
it is a tautology that V = V®! is isomorphic to the space of homogeneous
polynomials of degree 1 in the variables X, ... .. X 4. It turns out that for every
n >0, V" is isomorphic to the space of homogeneous polynomials of degree
n in the non-commuting variables X, ... . X4. For instance, if d = 2, then a
basis of V®? is (X7, X; X5, X2 X, X2). Finally, T((V)) is isomorphic to the
space of all formal power series in d non-commuting variables, not only as
a vector space, but also as an algebra: the product of tensors corresponds
exactly to the product of non-commuting polynomials.

The fundamental property of the signature is the following: if (s, u.t) are
such that 0 < s <u <t <T, then

S(<\’).~'.f — S(‘\’)N.u ® S(.\’)“". (7)

This multiplicativity property, although it encodes infinitely many relations
between iterated integrals of X, can be proved in a very elementary way.
However, the following abstract and informal point of view gives an interesting
insight on the signature of a path. Among all differential equations that X
can control, there is one which is more important than the others and in a
certain sense universal. It is the following:

dS, = S, ®dX,, So=1, S:[0.T] — T((V)). (8)

The solution to (8) is nothing but the signature of X: S; = S(X)y. This
suggests that the signature of a path should be thought of as a kind of universal
non-commutative exponential of this path. Moreover, we deduce from (8) that
the two sides of (7), which satisfy the same differential equation with the same
initial value, are equal.

Chapter 3 focuses on collections (Ss ¢ )o<s<i<r of elements of T'((V')) which
satisfy (7). Such collections are called multiplicative functionals and the point
of the theory of rough paths is to take them as the fundamental objects driving
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differential equations. Rough paths are multiplicative functionals which satisfy
some regularity property related to p-variation.

Like the multiplicativity property, the regularity property is inspired by
the study of the signature of a path. If X has bounded variation, then X!, =
Xi — Xg ~ |t — s| and X', is of the order of |t — s[™. If X has only finite
p-variation for some p € (1,2), then it is still possible to define its iterated
integrals as Young integrals, and we expect X', to be of the order of |t — s| G

Let Ar denote the set of pairs (s,1) such that 0 < s <t < T. A multi-
plicative functional of degree n in V is a continuous mapping X : Ap —
T (V) = @), V¥ For each (s,t) € Ap, X, is thus a collection of n +
1 tensors (1, X ,,Xf,,...,X;f,). Let p > 1 be a number. A multiplicative
functional X is said to have finite p-variation if

L
sup supE:L\’,’A tega | < Ho0. (9)
0<i<n D

The first fundamental result of the theory expresses a deep connection between
the multiplicativity property (7) and the finiteness of the p-variation (9). It
states that a multiplicative functional with finite p-variation is determined
by its truncature at level |p|. More precisely, if X and Y are multiplicative
functionals of degree n > |p| with finite p-variation and X!, = Y/, for all
(s,t) € Ar and i = 0,..., |p], then X = Y. Conversely, any multiplicative
functional of degree m with finite p-variation can be extended to a multi-
plicative functional of arbitrarily high degree with finite p-variation, provided
lp] <m.

A p-rough path is then defined to be a multiplicative functional of finite
p-variation and degree [p]|.

Chapters 4 and 5 give a meaning to differential equations driven by rough
paths and present a proof of the main theorem of the theory, named Universal
Limit Theorem by P. Malliavin, which asserts that, provided f is smooth
enough, (2) admits a unique solution when X is a p-rough path. The solution
Y is then itself a p-rough path.

Let us conclude this introduction by explaining the part of the Universal
Limit Theorem which can be stated without referring to rough paths, i.e. let
us describe the metrics on the space of paths with bounded variation with
respect to which the It6 map is uniformly continuous. Choose p > 1. Consider
X and X, both with bounded variation. For all (s.#) and all n > 0. let X,

and 5(;1, denote their iterated integrals of order n over [s,t]. Then the distance

in the p-variation metric between X and X is defined by

dy(X.X) = sup x}lp[Z|X,A S < L (10)

0<i<|p]

Now, provided the vector field f is of class C'P = the It6 map I is uniformly
continuous with respect to the distance d,,.
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It has been a great pleasure for us to write these notes, not the least
thanks to the countless hours of discussions we have had with Terry Lyons
during their preparation. We would like to thank him warmly for his kind
patience and communicative enthusiasm. Our greatest hope is that some of
this enthusiasm, together with some of our own fascination for this theory,
will permeate through these notes to the reader.



A Word About the Summer School

The Saint-Flour Probability Summer School was founded in 1971. It is sup-
ported by CNRS. the “Ministere de la Recherche”, and the “Université Blaise
Pascal”.

Three series of lectures were given at the 34th Probability Summer School
in Saint-Flour (July 6-24, 2004), by the Professors Cerf, Lyons and Slade.
We have decided to publish these courses separately. This volume contains
the course of Professor Lyons; this final version has been written with two
participants of the school, Michael Caruana and Thierry Lévy. We cordially
thank them, as well as Professor Lyons for his performance at the summer
school.

Sixty-nine participants have attended this school. Thirty-five of them have
given a short lecture. The lists of participants and of short lectures are enclosed
at the end of the volume.

Here are the references of Springer volumes which have been published
prior to this one. All numbers refer to the Lecture Notes in Mathematics
series, except S-50 which refers to volume 50 of the Lecture Notes in Statistics

series.

1971: vol 307  1980: vol 929 1990: vol 1527 1998: vol 1738

1973: vol 390 1981: vol 976 1991: vol 1541  1999: vol 1781

1974: vol 480 1982: vol 1097 1992: vol 1581 2000: vol 1816

1975: vol 539 1983: vol 1117 1993: vol 1608 2001: vol 1837 & 1851

1976: vol 598 1984: vol 1180 1994: vol 1648 2002: vol 1840 & 1875

1977: vol 678 1985/86/87: vol 1362 & S-50  1995: vol 1690  2003: vol 1869 & 1896
1978: vol 774 1988: vol 1427 1996: vol 1665 2004: vol 1878, 1879 & 1908
1979: vol 876  1989: vol 1464 1997: vol 1717  2005: vol 1897

Further details can be found on the summer school web site
http://math.univ-bpclermont.fr/stflour/

Jean Picard
Clermont-Ferrand, September 2006
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