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INTELLIGENT ROBOTS AND COMPUTER VISION
SIXTH IN A SERIES

Volume 848

INTRODUCTION

The Intelligent Robots and Computer Vision Conference was held November 2-6, 1987, in Cambridge,
Massachusetts. This was the sixth conference in a continuing series that provides an international forum
for new ideas and concepts for manipulators, vision and tactile sensor systems, control structures,
algorithms, and paradigms of intelligent robots.

Eighty-one papers from eight countries are included in this proceedings. The fourteen sessions range from
theoretical foundations in pattern recognition and image processing to applications of intelligent robots for
textile fabric handling and automated assembly.

The sessions reflect the broad scientific base needed for the support and development of useful, intelligent
machines. The first session, Pattern Recognition, includes new algorithms with an optical emphasis. The
second session, Image Processing, contains a variety of new theoretical and experimental papers on
imaging algorithms. The third session is on sensors and has a concentration of papers on exciting new uses
of tactile sensors. The fourth session, Model-Based Object Recognition, considers the high level image
understanding problems and contains excellent papers on the use of 3D models for image matching and
tracking. The fifth session, on image understanding, continues the high level concentration with excellent
papers on architectures and new machines. The sixth session is Artificial Neural Systems and expands the
theme to adaptive networks that resemble neural networks in humans. The seventh session is on
three-dimensional object recognition. Several new algorithms for 3D object measurement and recognition
are presented. The next session, Multisensor Object Recognition, contains papers in the important area of
fusing image data from several sensors. The ninth session, on stereo image processing, includes several
new approaches to stereo vision understanding and applications. The session on optical flow contains
papers on new approaches to motion estimation from images. The eleventh session is Intelligent Control
and provides excellent papers on low and high level control methods for robots and intelligent machines.
The twelfth session, Vision-Aided Automated Control Systems, contains papers on new expert control
systems. The next session, Architectures and Software, contains papers on the new generation of
machines such as the Hypercube, as well as interactive expert language and systems for imaging and
robotics. The fourteenth and final session, Industrial Applications, contains some exciting papers, such as
the application of mathematical morphology for vehicle detection.

The distribution of papers in the proceedings is interesting; approximately 8% of the papers were given by
government researchers, about 60% of the papers were contributed by university-based researchers, and
about 20% of the papers were contributed by industrial researchers. Finally, about 12% were contributed
by university/industry or university/government teams. The number of cooperative papers has increased
over the number presented in 1986. We believe this is a positive trend.

(continued)
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This conference was held in conjunction with four other SPIE conferences: Automated Inspection and High
Speed Vision Architectures (SPIE Vol. 849), Optics, lllumination, and Image Sensing for Machine Vision Il
(SPIE Vol. 850), Space Station Automation Ill (SPIE Vol. 851), and Mobile Robots I (SPIE Vol. 852). These
proceedings should be of interest to readers with specific application interests. A similar conference
arrangement is planned for 1988.

We gratefully acknowledge the assistance of Marlene Layton, the enthusiastic support of the conference
committee, session chairs, and authors for making these contributions available.

David P. Casasent

Carnegie Mellon University

Ernest L. Hall
University of Cincinnati

viii/ SPIE Vol. 848 Intelligent Robots and Computer Vision: Sixth in a Series (1987)



INTELLIGENT ROBOTS AND COMPUTER VISION
SIXTH IN A SERIES

Volume 848
Contents

anka L vi
AEPESEIUTERTCIT s m 0 om0 5 B O, B S8 0 530 8 5 3 55 03 8 Y e vii
SESSION 1. PATTERN RECOGNITION. ..........oiiuiiiintiiitt it 1
848-01 Rule-based string code processor, D. Casasent, S.-I. Chien, Carnegie Mellon Univ. ..................ooooo. .. 2
848-02 Optical feature extraction for high speed inspection, D. Clark, Global Holonetics Corp.; D. Casasent, Carnegie

AABNGI IR « 0 s mam s v m 5 00 06040 30000 0 500 0 B 0.0 57051 555§ 458 55 4608 40 5 30w e 13
848-03 Orthonormal Fourier-Mellin transform for precision scale detection and range data acquisition, J. D. McMillen,

0. R. Mitchell, PUrdue UNiV. . . . . .ot e ietiiitiieeee s e eneenennneeeeesannnnnnnnsss o 25
848-04 Obiject identification and orientation estimation from contours based on an affine invariant curvature,

D. Cyganski, T. A. Cott, J. A. Orr, R. J. Dodson, Worcester Polytechnic Institute. .......................... 33
848-06 Recognizing and locating objects using partial object description generated by feature extraction by demands,

H. Wu, F. L. Merat, Case Western ReServe UNiV. .. ... ...........eeeennnnnnns 40
848-08 Morphological shape representation and recognition of binary images, S. Sengupta, H. S. Yang, Univ.

OFBOWE, 5 400w im0 0 500 50090 0 0 B 8 5155085 06 005 550 0 s 50
848-09 Frequency domain characterization of synthetic discriminant functions, B. V. K. V. Kumar, Z. Bahri,

CAnEie MBI LINIE .o oo b un s inm 085055 k5.8 0456518555558 55555 5055 55 51 4.8 2 510 .50 15 50 2 s 56
SESSION 2. IMAGE PROCESSING .. .....ouuti ittt 63
848-10 Vision-guided intelligent robot design and experiments, G. D. Slutzky, E. L. Hall, Univ. of Cincinnati. . ......... 64
848-11 Digital morphological sampling theorem, R. M. Haralick, X. Zhuang, Univ. of Washington; C. Lin, J. Lee,

BoiNg Co. .\ e 71
848-12 New algorithms for automated symmetry recognition, J. Paul, T. E. Kilgore, A. Klinger, Univ. of

CANTONNIA/LOS ANGOIBE. &5 v o wixsva s 016 4855 555552 5.5 5080000 05 9105 519 50878 6.8 555 5 5 8 1 5 5 .0 s 88
848-13 Localized noise propagation effects in parameter transforms, A. Califano, R. M. Bolle, IBM/T. J. Watson

PREEBBNOIICIE. 5 5.0 o e w0 3 508 5508 50 i o 5 0 505 654 55 58 B 56 55855 1 0 o 5 3 a0 B 93
848-14 Image edge detection and width estimation with V2 G filters, W. L. G. van Warmerdam, V. R. Algazi, Univ.

of California/Davis. ..........ouiiiiiiiiii ittt 102

848-15 Flexible corner detection based on a single-parameter control, S.-Y. Chen, M.-Y. Chern, Northwestern Univ. . . 108
848-16 Experimental system for the integration of information from stereo and multiple shape from texture

algorithms, T. E. Boult, M. Moerdler, Columbia UNiV. ... .......uunneeensssseessooooe 115
848-18 Discriminating textured surfaces in natural imagery, S. Dunn, K. Gulukota, Rutgers Univ. . ................. 124
848-19 Segmentation and classification of textured images using two-dimensional stochastic models,

A. Khotanzad, Southern Methodist UNiV. . .............ouueenernsnsie e S6 55w 131
848-20 Accuracy of position estimation by centroid, T.-C. Deng, T. L. Bergen, The Aerospace Corp. ................ 141
848-21 Model for pattern recognition, G. Qu, Z. Li, Harbin Institute of Technology (China). ...........oouuuunnnn... 151
SESSION 3. SENSORS .........uiiiiiiiiiiiii ettt et 155
848-22 Recognition of similar objects using tactile image array sensor, R. C. Luo, H.-H. Loh, North Carolina

SO LIV 0w 00059 4000 50 000 0 T 5 3 50 1 33 0 B 0 1 o 15 e 156

848-23 Integrated smart tactile sensor for 2-axis robot grippers, A. J. Harris, C. R. Allen, Univ. of Newcastle upon
Tyne (UK); W. Glass, Fraunhofer-Institut fur Produktionstechnik und Automatisierung (FRG); A. Shepherd,
L. Cooper, S. Moss, Univ. of Newcastle uponTyne (UK). ... e 164

848-24 General approach to calibration of robotic sensor systems, C. P. Cullen, Automatix INC. +.................. 171

SESSION 4. MODEL-BASED OBJECT RECOGNITION ..............ooouuineennnni 181
848-31 Model-based hierarchical diagnosis of robotic assembly cell, C. N. Lee, M. Y. Chiu, P. Liu, S. J. Clark, Siemens

Corporate Research and SUPPOIE, TG, 5 505 55 51500 w05 5 800 50 85 2165 358 06 415 06 W B 5 5 8 e 182

848-32 Model-based satellite acquisition and tracking, D. Casasent, A. J. Lee, Carnegie Mellon Univ. ............... 190

(continued)

SPIE Vol. 848 Intelligent Robots and Computer Vision: Sixth in a Series ( 1987) / iii



SESSION 5. IMAGE UNDERSTANDING . occ v 0 5 m0s & 50850605 5 85 515 5508 005 508 1 ¢ o 5o i 0 8 b0 880 508 8 o808 508 508 958 205

848-33 Structure of vision modules on a fine-grained machine, J. J. Little, Massachusetts Institute of Technology. .... 206
848-34 Model-based object recognition using the Connection Machine, L. W. Tucker, Thinking Machines Corp. ...... 214
848-35 Hierarchical control strategy for two-dimensional object recognition, M. F. Cullen, C. L. Kuszmaul,

T.S. Ramsey, Perkin-EIMer Corp. . .o .vutttt ittt ittt ittt tee s enenaennenenenenenennenns 220
848-36 Rapid recognition out of a large model base using prediction hierarchies and machine parallelism,

J. B. Burns, Univ. of Massachusetts; L. J. Kitchen, Univ. of Western Australia (Australia). .. .........coovou.. 225
848-37 Pyramid linking algorithms for image segmentation on the Connection Machine, B. P. Kjell, P. Y. Wang,

GEOrge: MasOm WNIV. & s e oo v s msio s o5 6 s s 58560 5 e @8 i os o 66 o s s 515 808 05 508868518 8000 o8 e s ocmme s o0 n 0 234
848-38 Automatic target detection on the Connection Machine, R. M. Hord, MRJ, INC.. . .. ..o oviviniininnnnnnn.. 241
848-39 Can shape description be applied to model matching?, R. Weiss, Univ. of Massachusetts. .................. 245
848-41 Robust parallel computation of image displacement fields, P. Anandan, Yale Univ.; M. F. Cullen,

L= T =3[ 4= 0T g 248
848-42 Adaptive image processing techniques, J. S. J. Lee, P. V. Budak, C. R. Lin, R. M. Haralick, BoeingCo. ......... 255
SESSION 6. ARTIFICIAL NEURAL SY STEMS. . ...ttt ittt it ettt et et ettt et e, 263
848-43 Adaptive novelty filtering for machine vision, R. A. Messner, J. G. Bailey, Univ. of New Hampshire; H. H. Szu,

Naval ReSEAICH LaAD: s« ow s sm 555 5 5 56 600 8605 5800k, 5560 oo s im0 518) 011l 6 0 18151 6 6. o e sttt 6 1 264
848-44 Adaptive resonance theory (ART) 2: self-organization of stable category recognition codes for analog input

patterns, G. A. Carpenter, Boston Univ. and Northeastern Univ.; S. Grossberg, Boston Univ. ............... 272
848-45 Pattern recognition using a neural network, M. R. Sayeh, J. Y. Han, Southern lllinois Univ./Carbondale. . ...... 281
848-46 Teaching artificial neural systems to drive: manual training techniques for autonomous systems,

J. F. Shepanski, S. A. Macy, TRW, I, ¢ « ss s s 56 w98 55 056 55 5 5 % 56 o0 06 it 5 50 30868 508 654t 3,68 8 518 0108 510 ave e oom 286
848-48 Shape recognition using a cerebellar model articulation controller (CMAC) based learning system,

F. H. Glanz, W. T. Miller, Univ. of NeW Hampshire. ... ...ouuntititi ittt ettt eneeneeneneanennns 294
848-49 Bus Automata for intelligent robots and computer vision, J. Rothstein, Ohio State Univ. . .................. 299
848-50 Notes toward a theory of artificial sentience, B. J. Flanagan, SENTECH. . .. .....c.itiintninenennnnnnn. 310
848-51 Associative memory synthesis, performance, storage capacity and updating: new heteroassociative

memory results, D. Casasent, B. Telfer, Carnegie Mellon Univ. . . ..ovut vttt iiinn i neennnnnnnn. 313
SESSION 7. THREE-DIMENSIONAL OBJECT RECOGNITION . .. ..ottt ittt it et et 335
848-52 Three-dimensional understanding based on the line sequence match, G. Xuan, Q. Wang, Xi‘an Jiaotong

UMV (CRINAY: i ¢ 0000 5 sorm0w 50 5 15 1579080 5550100 580995 50 5 80580 5 6 510 015,555 19 95120 B B 4 16 48 o 58 § 551008 v . s e e o st . 336
848-53 Shape representation and recognition with depth information, J. W. Gorman, Univ. of South Carolina;

O. R. Mitchell, PUrdue UiV, .. .i ittt ettt it it it et et et et et et ettt ettt ettt ettt ettt 344
848-54 Three-dimensional object recognition by multiple-contour matching, H.-T. Tsui, K.-C. Chu, M.-H. Chan,

Chinese Univ. of HONG KONG. ..ottt it ittt ittt ittt ittt et et ettt ittt ittt et eeennennnns 350
848-55 Recovery of superquadrics from three-dimensional information, T. E. Boult, A. D. Gross, Columbia Univ. . ..... 358
848-56 Three-dimensional surface reconstruction using orientation map and sparse depth map information,

M. T. Chiaradia, A. Distante, E. Stella, LE.S.1.-C.N.R. Bari (Italy). . « .« oottt et ettt et et eeeeeenenns 366
SESSION 8. MULTISENSOR OBJECT RECOGNITION. . ..ottt ittt it ittt ettt et e et e e eneanns 379
848-59 Machine vision identification technique from range images, N. Kehtarnavaz, S. Mohan, Texas A&M Univ. . ... . 380
848-60 Range image segmentation via distance slicing, J.-G. Leu, |. K. Sethi, Wayne State Univ. . .................. 388
848-61 Segmentation of planar and quadric surfaces, P. Boulanger, M. Rioux, National Research Council Canada. . ... . 395
SESSION 9. STEREO IMAGE PROCESSING. .. ..ouittttttit ittt ettt te ettt ete et ee e eteeennnnns 405
848-62 Why stereo?, S. S. Toumodge, The AeroSPace COrP. .« v v vt tte et eneenerneenennenneneneeneeeennenens 406
848-63 General formalization of stereo vision, L. B. Wolff, Columbia Univ. .......c.ovuiiiiinineuneneenennennnn. 411
848-64 Interpolation of stereo data with Shepard’s surfaces, R. Srinivasan, Univ. of Windsor (Canada); M. Shridhar,

Univ. of Michigan/Dearborn; M. Ahmadi, Univ. of Windsor (Canada). ... .....c.uutittutenennenennennnnss 425
848-65 Application of multichannel Hough transform to stereo vision, N. M. Nasrabadi, Y. Liu, Worcester

o1 1V (=T ot o T g T3 [ T3 (U = P 434
848-66 Three-dimensional location and recognition of polyhedric objects, N. Laieb, N. Tonfack, A. Faure, Univ. du

L F= VT = - T o= A 445

iv / SPIE Vol. 848 Intelligent Robots and Computer Vision: Sixth in a Series (1987)



SESSION 10. OPTICAL FLOW. . . . ..ottt ittt et et e et e e e e e e e e e e e 453
848-67 Estimating the three-dimensional motion of a rigid planar patch in the Hough parameter space,

G. R. Arce, W. E. Wonchoba, Univ. of Delaware; E. R. Malaret, BDM COIp. .. ...uoueneneenn e, 454
848-68 Spherical approach to optical flow, M. A. Penna, Purdue Univ.; S. Chen, Univ. of North Carolina. . ............ 462
848-69 Determining the correspondence of consecutive images without difficult match, C.-M. Jong, E. Salari, Univ.

Of Toledo. . .. one e 469
848-70 Calculating the image flow field of a moving planar surface under perspective projection, C.-M. Jong,

B SBIATT Wivs OF TOMIA0. « o« 55 w000 w00 655 30500 193040508 05 08 01 €5 1 0 6 s e s s 474
848-71 Temporal regularization of optical flow, P. Greenway, British Aerospace PLC(UK). . ..ovvvvvvvnnnnnnnn. .. 478
SESSION 11. INTELLIGENT CONTROL. .....ouiiitititt ettt i e 487
848-72 On the theory of intelligent controls, G. N. Saridis, Rensselaer Polytechnic Institute; K. P. Valavanis,

Northeastern Univ. .......oooiiiiiiiiiiii ittt ettt 488
848-73 High-level planning and low-level control, T.Dean, Brown Univ. .........uuuiiunieennnnnnnnn . 496
848-74 Expert supervisor for a robotic work cell, M. C. Moed, R. B. Kelley, Rensselaer Polytechnic Institute. .......... 502
848-76 Structure of the time-optimal control of robot arms, Y. Chen, A. A. Desrochers, Rensselaer Polytechnic

L A 508
SESSION 12. VISION-AIDED AUTOMATED CONTROL SYSTEMS. ... 517
848-77 Vision-guided robots for automated assembly, F. G. King, G. V. Puskorius, F. Yuan, R. C. Meier,

V. Jeyabalan, L. A. Feldkamp, FOrd MOtor CO. . .......eeuuuuuuusineeessessae 518
848-79 Describing a robotic scene, V. Hayward, S. Aubry, McGill Research Ctr. for Intelligent Machines. ............. 525
848-80 Reasoning with inaccurate spatial knowledge, R. S. Doshi, J. E. White, R. Lam, D. J. Atkinson, Jet

PROPUISION LABL inrs s 5500 55008 50405 BT TE 09 BT 555 051950807 65 54 5.8 4000 055 €658 5.0, 31008 50t e s 533
848-81 Artificial neural-net based intelligent robotics control, Y.-H. Pao, D. J. Sobajic, Case Western Reserve Univ.. . .. 542
848-82 Computer control of the dynamic coordinative assembling of peg-hole, C. H. Tsu, Shenyang Univ. (China);

Z. X. Xian, Shandong Normal Univ. FRERTRINELY. 5. o s i w0 e 00 05 900 5 5 8 e 2 550
848-83 Expert system for flexible palletizing of mixed size and weight parcels, A. K. Mazouz, R. L. Shell, E. L. Hall,

Univ. of CINGINNALL. ... 556
SESSION 13. ARCHITECTURES AND SOFTWARE. ...........oouuiiiunneneea 565
848-84 Hypercube architecture for singular value decomposition and other fast transforms, H. S. Hou, The

PABLOSPRICE 0N 0050 wasi oo o 6 30050 00055006 55130 5 8 5851 506 1 566
848-85 Versatile chip set for image processing algorithms, M. S. Krishnan, AST Research Inc...................... 573
848-87 Fast Hough transform on a mesh connected processor array, C. S. Kannan, H. Y. H. Chuang, Univ.

Of Pittsburgh. . . . oo 581
848-88 Architecture for boundary-based segmentation, J. M. Apffel, SiISCAN Systems; J. L. C. Sanz, IBM Research,

A. K. Jain, K. W. Current, Univ. of California/Davis. . ...............oeueuunessssisss 586
848-89 Programmable processor for real-time feature extraction, T. J. Ellis, The City Univ. (UK). ................... 594
848-90 Interactive Al language for image processing and robotics, B. G. Batchelor, Univ. of Wales Institute of

Science & Technology (UK). «...oouiiieiiiiiiinireeireeeeeeinieereeesrsenrees 600
848-91 Interactive image processing environment with expandable packages, M. Blanchet, D. Poussart, Univ.

Laval (Canada). .........ouumnniiit it et 608
848-92 Expert color imaging, a PC-based approach, B. C. Hall, ICR Corp.; E. L. Hall, Univ. of Cincinnati............... 615
848-93 VLSI implementation of a fast contour tracing method, H. S. Hou, The Aerospace (611 < AR 625
848-94 Multipipeline architecture for real-time low-level image processing, Z. Chen, C. C. Chang, S. Y. Lin,

R. H. Hwang, National Chiao Tung Univ. (Taiwan). ...ttt 631
SESSION 14. INDUSTRIAL APPLICATIONS. .......uuuieenunteiresinteseaniesennns s 639
848-95 Knowledge-based graphics understanding and description for document archival and retrieval, S. T. Bow,

Northern lllinois Univ.; W. EI Masri, Pennsylvania State Univ. ............ooiuiiieinnsn . 640

848-96 Traffic spatial measurements using video image processing: application of mathematical morphology to
vehicles detection, S. Beucher, Ecole des Mines de Paris (France); J. M. Blosseville, F. Lenoir, Institut

National de Recherche sur les Transports et leur SECUrité (FFrance). . ... .....ouuueenennsnrnrnn e, 648
848-97 Robot drawing-reading automatic assembly system, L. Lu, Z. Gu, K. Xia, Tsinghua Univ. (China). ............ 656
ASCRIBITTRILIE] 25 0 010550 e 0880 500 5 0 5 15 05 5 08 95 5 B 50519 0 6 gt 662
PO TITCHER L i 0 s 35 50 S 305 .5 50 8 0 S R S 0885 4158 0 £ 5 3 s 663

SPIE Vol. 848 Intelligent Robots and C. omputer Vision: Sixth in a Series (1987)/ v



INTELLIGENT ROBOTS AND COMPUTER VISION
SIXTH IN A SERIES

Volume 848

Conference Committee

Chairs
David P. Casasent, Carnegie Mellon University
Ernest L. Hall, University of Cincinnati

Program Committee
Bruce G. Batchelor, University of Wales (UK); Mark F. Cullen, Perkin-Elmer Corporation:
H. Steve Hou, The Aerospace Corporation; Ren C. Luo, North Carolina State University;
Nelson Marquina, RCA Advanced Technology Laboratories; C. Anthony McPherson, Avco
Research Laboratory; Richard Messner, University of New Hampshire; Mitchell Nathan,
University of Colorado/Boulder; André Oosterlinck, Catholic University of Leuven (Belgium);
Lewis J. Pinson, University of Colorado/Colorado Springs; Steven K. Rogers, Air Force
Institute of Technology; Paul S. Schenker, Jet Propulsion Laboratory; Anne Schur, Honeywell
Inc.; David M. Siegel, Massachusetts Institute of Technology; Susan Snell Solomon,
Datacube Inc.; Donald J. Svetkoff, Synthetic Vision Systems

Session Chairs

Session 1—Pattern Recognition, David P. Casasent, Carnegie Mellon University

Session 2—Image Processing, Ernest L. Hall, University of Cincinnati

Session 3—Sensors, Ren C. Luo, North Carolina State University

Session 4—Model-Based Object Recognition, Steven K. Rogers, Air Force Institute of
Technology

Session 5—Image Understanding, Mark F. Cullen, Perkin-Elmer Corporation

Session 6—Artificial Neural Systems, Richard A. Messner, University of New Hampshire

Session 7—Three-Dimensional Object Recognition, Mitchell Nathan, University of
Colorado/Boulder

Session 8—Multisensor Object Recognition, Mitchell Nathan, University of
Colorado/Boulder

Session 9—Stereo Image Processing, Bruce G. Batchelor, University of Wales (UK)

Session 10—Optical Flow, Bruce G. Batchelor, University of Wales (UK)

Session 11—Intelligent Control, Paul S. Schenker, Jet Propulsion Laboratory

Session 12—Vision-Aided Automated Control Systems, Paul S. Schenker, Jet Propulsion
Laboratory

Session 13—Architectures and Software, H. Steve Hou, The Aerospace Corporation

Session 14—Industrial Applications, C. Anthony McPherson, Avco Research Laboratory

vi/ SPIE Vol. 848 Intelligent Robots and Computer Vision: Sixth in a Series (1987)



INTELLIGENT ROBOTS AND COMPUTER VISION
SIXTH IN A SERIES

Volume 848

Session 1

Pattern Recognition

Chair
David P. Casasent
Carnegie Mellon University

SPIE Vol. 848 Intelligent Robots and Computer Vision: Sixth in a Series (1987)/ 1



Rule-based String Code Processor

David Casasent and Sung-Il Chien

Carnegie Mellon University
Center for Excellence in Optical Data Processing
Department of Electrical and Computer Engineering
Pittsburgh, PA 15213

ABSTRACT
A new and efficient real time technique to produce a string code description of the contour of an
object, such as an (angle, length) = (¢, s) feature space for the arcs describing the contour, is

detailed. We demonstrate the use of such a description for an aircraft identification problem case
study. Our (¢, s) feature space is modified to include a length string code and a convexity string
code. This feature space allows both global and local feature extraction. The local feature extraction
follows human techniques and is thus quite suitable for a rule-based processor (as we discuss and
demonstrate). Aircraft have generic parts and thus are quite suitable for the model-based description.

1. INTRODUCTION

Aircraft recognition is a classic pattern recognition problem recently surveyed [1]. Many feature
spaces have been suggested for such multiple degree of freedom pattern recognition problems. These
include: moments [2,3] (which require large dynamic ranges and are noise sensitive when made
distortion-invariant); Fourier descriptors [4,5] (which still require feature extraction, computationally
intensive matching lists, and which do not lend themselves to use of local information or features);
and various curvature features. Our proposed technique handles global and local features, includes
feature extraction with in-plane distortion-invariance and avoids a large matching search.

We selected a string code description of the object. Other work with similar descriptions [6-9] has
also been used and their VLSI realization discussed [10-12]. However, our string code description (¢, s)
= (angle, length) of the arcs on the contour of an object is generated most efficiently and allows
global and local feature space analysis. Global features are necessary for general problems and local
features allow specific problems to be solved quite effectively. The local features we use correspond to
specific object parts and thus allow rule-based analysis (since this is the manner in which humans
achieve identification). Our edge description is different from the conventional chain code [9] and we
do not convert the chain code to an (x, y) or other description as others [7] do early in the processing
period. Our rule-based technique differs from syntactic [13] techniques. Our rule-base follows a
forward chaining control flow as does SPAM [14]. As our model knowledge, we employ. specific
aircraft structural and part information.

Section 2 describes our case study, model base, and data base. Section 3 provides an introduction
and overview of our processor and our feature space. Section 4 details our new efficient feature space
generation technique and includes typical results. Section 5 briefly discusses our rule-based processor.
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2. DATA BASE

The case study we consider is the identification and orientation estimation of 10 different aircraft.
Fig.1 shows the top-down views of these aircraft grouped by the functional role of the aircraft. In our
tests, all aircraft are 128 x 128 pixels in resolution. Our model base contains different polygon

descriptions of all aircraft and their parts, from which any aspect view can be produced quite easily
[15].

3. PREPROCESSOR OVERVIEW

Our full processor contains five major sections as shown in Fig.2. The preprocessor performs edge
enhancement (this is necessary to produce good peaks in the Hough transform space we will employ)
and generates a clockwise ordered list of pixel coordinates for the contour or boundary of the object
(using classic techniques [16,17]). The feature space produced is a (¢, s) description of the angle (¢)
and the length (s) of all arcs clockwise in a string code connected object boundary or contour
description. An aspect estimator unit determines if the aircraft is being viewed nearly top-down or if
an out-of-plane distorted image is being investigated. A rule-based or an associative processor are used
(depending upon the aircraft object’s distortions). In this present paper, we discuss the rule-based
processor. Thus, in this initial work, we will restrict attention to nearly top-down aircraft views.

4. EFFICIENT (¢, s) STRING CODE FEATURE SPACE GENERATION

The first step is to reduce the clockwise ordered contour pixel list to N (approximately 20-30)
vertices. Fig.3 shows a DC10 (Fig.3.a) and its boundary description with the vertices noted (Fig.3.b).
The N vertices define N arcs for the boundary, each with a length (s) and an internal angle ().
Fig.3.c defines the angle ¢. The result is a (¢, s) string code.

The block diagram of our efficient (4, s) string-code generation system is shown in Fig.4. We use
the clockwise-ordered contour list of the boundary pixels (x, y), form the Hough transform (HT) of the
input from the original data, and locate the six major (and true) HT peaks and their (p, 6) values.
We then Hough transform each contour pixel and check if it evokes a peak at one of the (p, 0) six
major HT peak parameter locations. This assigns most contour points to the six major lines in the
image and gives automatically (without time-consuming trigonometric operation) the angle ¢ and the
length (s) of these lines. Only a small fraction of the pixel points in the contour list remain to be
assigned ¢ and s values. Each of these is a connected set of pixels that lies in a gap between
previously assigned points. We achieve the (¢, s) description of these pixels into lines by a
conventional split-line fitting method [18,19]. This split-line technique is computationally expensive,
but (with the six major lines and our HT technique) this needs only to be applied to a significantly
reduced number of points in the contour list. Thus, this technique generates the full (¢, s) string code
description quite efficiently.

A HT converts lines in the input into points in a (p, 6) parameter Hough space, i.e. at coordinates
corresponding to the normal distance (p) and the angle (6 with respect to the x axis) of the normal of
the line, with six peak heights proportional to the number of points on the line (or the length of the
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(a) U.S.A. military aircraft: (1) B57 (2) F104 (3) F105 (4) Phantom

(b) Forei

(c) Commericial airliners: (1) B727 (2) B747 (3) DC10 (4) Swearingen
Figure 1: Image Data Base (128 x 128)

rb Rule-Based |—
Processor
Input Feature Aspect Class
Binary —g»| Preprocessor |—gpl Space —»| Estimation —p Orientation
Image Generation Confidence
Associative
| Processor -

Figure 2: Overall Processor
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(a) DC10 (b) DC10 vertices (c) Angle ¢ Definition
Figure 3: Example of vertices describing an object boundary (Fig.3 a and b)
as arcs of length s and internal angle ¢ (¢ is defined in Fig. 3.c)

Optical

Transform

Binary Reverse HT: Digital
Image Line and Angle Split-Line

_p Aspect
Assignment Fitting -

Estimation

Digital
Contour List

1 Ordering

Preprocessor Feature Space Generation

Figure 4: Block diagram of an efficient (¢, s) string code processor

line). Fig.5.a shows the HT for the DC10 with the nose vertical. Fig.5.b shows the HT for the DC10
with the nose horizontal. The two major peaks in Fig.5.a lie on the 6= 0° line and in Fig.5.b they lie
on the 6= 90° line. These two major peaks denote the presence of the fuselage and its orientation. In
Fig.5, we see six major peaks, however this does not always occur (when noise, quantization of the
image resolution, and 3-D roll and pitch distortions occur). To demonstrate this and techniques to
overcome these problems, we show (in Table 1) the 10 largest HT peaks obtained for the DCI0
oriented at 120 °. This demonstrates specifically that the largest six HT peaks do not correspond to
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the major lines in the image, specifically HT peak 6 and 7 are false peaks that are larger than peak 8
(which is the next largest true peak). We note [20] that such false peaks occur close to the true peak
(within three pixels for our aircraft data). Thus, we employ an algorithm that ignores HT space
peaks that lie within four pixels of the large peak. Employing this rule, the six proper peaks
corresponding to the six major lines in the aircraft image emerged (Table 2). Table 3 lists the six
aircraft lines corresponding to the six major HT peaks and Fig.6.a shows the lines in the aircraft

image itself. Fig.6.b shows the resultant final (4, s) image with all vertices obtained (including those
obtained by the split-line fitting technique).

An efficient technique to assign the 6 and p parameters of the six HT peaks to point in the contour
list is now detailed. To achieve this, we transform each pixel coordinates (x, y) in the clockwise
contour list into a sinusoid. This sinusoid needs only be evaluated at the six 6 values of the six
dominant HT peaks and at the p coordinates within each. Thus, these HT operations on the contour
list are easily achieved. Since we expect a number of successive pixels in the contour list (those for
each arc) to correspond to the same HT peak point, the processor can be quite fast (and very efficient,
compared to typical techniques involving extensive trigonometric calculation).

We now discuss the descriptions we employ of the string code representation of the object as a
symbolic descriptor. We first consider the full (¢, s) string code with the exact analog values for all
angles and lengths. Next, we consider a convexity string code. This lists only the convexity of the
angles of the arcs in the boundary representation as convex V (if ¢ < 180°) or concave C (if ¢ >
180°). Last, we consider a length string code which lists only the length of each arc as : very short,
short, medium, long, and very long. These are expressed in terms of maximum difference
A= Lmax_Lmin in the length L of the arcs for the input image. Each length region is A /6 except

for the medium length region which is A/3 in extent. These different symbolic string code

descriptions of the object contour are found to be quite useful for global and local rule-based
processing, as described in Section 5.

5. RULE-BASED PROCESSOR

Our rule-based system employs if-then rules, a context-limited and rule-ordered control strategy

and forward chaining with five rule groups used as we now describe. The first rule group (starting
rules) locates the fuselage.

The second rule group concerns substructure search rules. The purpose of this second rule group is
to locate all separate regions of an object and to divide them into left (L) and right (R) regions with
respect to the fuselage. We first extract the fuselage and all vertices corresponding to it. This
separates the contour list into L and R regions. We group these into separate connected regions
(closed polygon boundaries) corresponding to parts of the object. For each such region, we calculate
its area, perimeter, compactness, and its position with respect to the fuselage. Various rules are used
to determine the type of each region. Three representative examples are given below:
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Figure 5: HT of DC10 with nose oriented vertical (a) and horizontal (b)

Hough Peak p(pixel) 6(degree) Peak Height
1 3 165 100
2 -19 114 95
3 -5 60 92
4 19 6 92
5 5 60 87
6 -20 111 72
7 20 9 67
8 3 135 65
9 -7 63 55

10 -5 162 52

Table 1: Data on the 10 largest peaks for a DC10 with its nose at 120 °

Hough Peak p(pixel) 6(degree) Peak Height
1 3 165 100
2 -19 114 95
3 -5 60 92
4 19 6 92
5 5 60 87
6 3 135 65

Table 2: Data on the six largest HT peaks using our false peak algorithm.
The six peaks noted are the correct ones.
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Corresponding Aircraft Part

Right Line on Fuselage

Left Line on Fuselage

Right Front Wing Line \
Right Rear Wing Line

Left Front Wing Line /

Left Rear Wing Line /

(a) (b)

Table 3: 6 major lines in an aircraft Figure 6: Aircraft Image with
(a) only the six major arcs and (b) all arcs

Rule 1: Wings are the largest regions in L and R. They must have the proper
spatial relationship to the fuselage.

Rule 2: If the convexity symbolic code for a region has all vertices convex,
then this region is a wing with no engines etc on it.

Rule 3: If the convexity symbolic code for a region has two concave vertices
out of four adjacent vertices and if this correspond to short arcs, then this
region is a wing with an engine etc on it.

From the location of the concave vertices and arcs of short length, the position of the engine etc
(refered to as a "blob") or small structure on the wing (or fuselage) can be determined. We discuss
this further below. Fig.7 shows examples of a wing region with no engine (Fig.7.b) as detected from its
convexity code (Fig.7.a). Fig.8 shows an analogous example when the convexity code (Fig.8.a) shows
several C sections and hence indicates the presence of an engine in the image of Fig.8.b. Following
such rules, we can segment the L and R regions into parts as shown in Fig.9 (wings, tails, and blobs)

The third rule group we use provides a check on the top-down orientation estimation (this is
obtained from the number of regions in L and R, the areas of these regions, and the symmetry of the
L and R sections), yaw estimates (these are obtained from the @ coordinate of the fuselage peak in the
HT space), and roll estimates (from the symmetry or ratios of areas in regions L and R)

The fourth rule group concerns substructure rules. These are intended to identify the small or local
features or object regions or parts. The best example of this concerns "blobs" on wings and
specifically whether these are engines, missiles, or fuel tanks. For the image data base we considered,
we note (from Fig.1) that if the blobs appear in the center of the wing, the blob is an engine (e.g.
DC10); and if it appears on the tip of a wing, it is a missile (e.g. F104)

The fifth rule group contains classification rules. We note three examples below. There are
approximately 40 rules used in total.The following are intended to be representative examples. Before
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