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Preface

This is a follow-up to the Contemporary Mathematics volume that we edited
on the same topic and that was published by the American Mathematical Society
in 2008. This volume consists of contributions by researchers who were invited to
the Harlaxton Conference on Computational Group Theory and Cohomology, held
at Harlaxton College, The British Campus of the University of Evansville, August
4-8, 2008; and to the AMS Special Session on Computational Group Theory held at
Western Michigan University, October 17-19, 2008. The Harlaxton Conference was
supported financially by the De Brun Centre for Computational Algebra, National
University of Ireland, Galway, and the University of Evansville’s Institute for Global
Enterprise in Indiana.

Both the Conference and the Special Session focused on examples of using CGT
to solve problems that arise from many areas of group theory; in this volume we
find applications to the enumeration of subgroups of the symmetric group, cover-
ing groups by subgroups, the ongoing co-class project for classification of p-groups,
construction or computation of homological and cohomological invariants of groups,
probabilistic group theory, and the study of free groups, among others. Compu-
tational Group Theory plays many roles in these investigations, from exploration
that suggests conjectures or proofs, through performing key computations required
to establish theorems.

Once again, we present these examples in the hope that they will encourage
researchers and graduate students to think about ways in which they can incorpo-
rate CGT in their own research by seeing many different applications of CGT to
traditional problems in Group Theory.

The Harlaxton Conference was organized by Bettina Eick, Graham Ellis, and
Robert F. Morse; we thank them very much for all their work, and we also thank
the de Brun Centre and the University of Evansville for their financial support.

The second editor was supported in part by a grant from the Louisiana Board
of Regents. The first and third editors thank Arturo for his work managing and
editing the submissions. The three of us are grateful to all the participants in the
conferences, and to all authors who submitted contributions to this volume. We
are also very thankful indeed to the referees who did such an excellent and timely
job for both this and the previous volume. Finally, we are also very grateful to the
American Mathematical Society for their help in the publication of this volume,
particularly to Christine M. Thivierge for her help and patience.

Luise-Charlotte Kappe
Arturo Magidin
Robert Fitzgerald Morse
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The Probabilistic Zeta Function

Bret Benesh

ABSTRACT. This paper is a summary of results on the Pg(s) function, which is
the reciprocal of the probabilistic zeta function for finite groups. This function
gives the probability that s randomly chosen elements generate a group G, and
information about the structure of the group G is also embedded in it.

1. Introduction and History

Probabilistic group theory has been a growing field of mathematics for the past
couple of decades. While other papers have considered this field in greater generality
(see [Di,Shall, Shal2]), we will be focusing on the so-called Pg(s) function, which
is the function that gives the probability that s randomly chosen elements (with
replacement) of a finite group G generate G.

The study of the Pg(s) function began in 1936, when Philip Hall [H] created
the Eulerian function ¢¢(s), defined to be the number of s-tuples (g1,...,9s) € G*
such that (gq,...,9s) = G. Hall showed that

bc(s) = > pc(H)H|,

H<G

where pg (H) is the Mobius function of the subgroup lattice of G, defined inductively
as ug(G) =1 and
> pe(K)=0
H<K<G
if H <G.

After Hall, G.E. Wall [W] used a variation of the Eulerian function (the Euler-
ian polynomial) to prove the following theorem.

THEOREM 1.1 (Wall’s Theorem). If G is a finite solvable group, then the num-
ber of mazximal subgroups in G is less than |G)|.

2000 Mathematics Subject Classification. 20E34, 20F05, 20P05, 11M41.

Key words and phrases. group theory, zeta functions, Dirichlet series, subgroup lattices,
Moebius functions.

The author would like to thank Nigel Boston, Erika Damian, and the referee for their thought-
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2 BRET BENESH

Wall also conjectured that this result holds for nonsolvable groups, and relevant
work has been done to that end in [LiSh1] and [LiPySh].

The most recent wave of interest in this field began in 1996, when Nigel Boston
[Bo] and Avinoam Mann [Ma] independently defined the Pg(s) function described

above. It is clear that Pg(s) = ﬁgﬁs), or

Pa(9)= 3 |G H|

H<LZG

by using Hall’s result, and thus Pg(s) is a Dirichlet series.

A word on the motivation behind this paper: while this topic is interesting in
its own right — the author wrote his thesis [Be| on a similar subject — it is also
a viable topic for undergraduate research. The basic idea is accessible, as only
some knowledge of groups and proportions are needed. While many of the ideas
below are too advanced for most undergraduates, several of them are not; Boston
made a conjecture about the derivative of Pg(s), soon solved by Shareshian in
[Shar], that a calculus student could understand. Moreover, this topic lends itself
well to computational algebra packages like GAP [G] and MAGMA [BoCaPl]. In
fact, Boston’s 1996 paper references the use of Cayley, an early version of Magma.
Use of a computational algebra package would reduce the amount of background
knowledge needed for an undergraduate to begin research, as the student could use
simple programs to make conjectures about the Pg(s) function.

2. The Basics of Pg(s)

We begin with some basic facts about Pg(s), which are largely from [Bo] and
[Ma]. First, several examples of Pg(s), courtesy of Boston:

Cyclic Groups C,,: P, (s) = H (1 - l)

S
p|n,p prime p
; 2 2 1
The Alternating Group As: Pa,(s) = (1 - 2—3) <1 + 5) 1— §>
5 6 10 20 60 60
The Alt ti As: P =]l-———-— -
e ernating Group As: Py, (s) = 1 55 10 +2OS 30° 60
= Aut S
S™ for a Simple Group S: Psn(s) = H (PS( ) — i |;|S I)
i=0

By way of motivation, the probability that two integers chosen at random are
relatively prime can be solved, rather non-rigorously, by

H (1 1 ) 1 6
— —2 = — = —27
primes p p 4(2) T
where ((s) is the Riemann zeta function. The left side of the above equation
resembles a product of Pc,(s) functions evaluated at s = 2 and, we can think of
#(s) as a zeta function of G. We define ﬁl(s—) to be the probabilistic zeta function,
and it is common to label results for Pg(s) as results about the probabilistic zeta
function. While it initially only makes sense to consider natural numbers s in the
function Pg(s), we will see below that we can gain insight into G by expanding the

domain to the complex numbers.



THE PROBABILISTIC ZETA FUNCTION 3

The ring of finite Dirichlet series with coefficients in Z is a unique factorization
domain, so factoring Pg(s) will be of great interest. In fact, if N is a normal
subgroup of G, then we can factor Pg(s) as

PG(S) = PG/N(S)PG’N(S),

where Pg n(s) is given by the formula

P n(s Z |G H|
Jlsa

and interpreted as the conditional probablhty that a random s-tuple (g1, ...,gs) of
G* generates G given that (g1,...,gs,N) =G.

While one might conjecture that Pg ny(s) = Pn(s), this is only sometimes
true ([Bo]). Consider the symmetric group S5 and its alternating group As. It is
true that Ps, (s) = Pe,(s)Pa,(s), so that Pa_(s) = Ps, a,(s). However, we have

o= (1-3) (-3).

50 Ps, c,(s) =1— 2 #1— & = Pc,(s).
Recall that a chief series

1=NyCcN,C---CN,=G

is a collection of normal subgroups N; of G such that N;;/N; is minimal normal
in G/N;. Then the factorization Pg(s) = Pg/n(s)Pe,n(s) can be used repeatedly
on a chief series to obtain factors of Pg(s). Detomi and Lucchini [DeLul] proved
that the factorization is independent of the choice of chief series (Gaschiitz [Ga]
had previously proved this independence for solvable groups).

Another immediate result from the above factorization is that if Pg(s) is irre-
ducible, then G is simple. The converse is not true, however. For instance,

p B 2 2 4 14 28 21 28 42
rarm(e) = (1‘ 2—> (” e te T Tt 423)
is reducible. In fact, Ppgr(2,p)(s) is always reducible when ¢t = 3 (mod 4) and
p=2'—1 ([DamLuMo)).

The Frattini subgroup ®(G) of a group G is the intersection of all maximal
subgroups and equals the set of non-generators. If we have a normal subgroup N
contained in the Frattini subgroup, N contains only non-generators and we obtain
Pc(s) = Pg/n(s), since Pg n(s) = 1.

3. A Motivating Application

An important application of the Pg(s) function is to help determine the min-
imal number of generators of a group H, denoted d(H). For example, let H be a
finite group such that d(H) = m + 1 for some m, but all proper quotients @) of H
have the property that d(Q) < m. Dalla Volta and Lucchini [DaLu] proved such
an H must be isomorphic to

Lt:{(ll,...,h)ELtIllE“-Elt (mod]ﬂ)},

where L is a group with unique minimal normal subgroup M (the group L is called
a primitive monolithic group) and t is some integer.
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The probabilistic zeta function pops up in determining what the integer ¢ is.

In the same paper, Dalla Volta and Lucchini proved that if M is nonabelian, then
m m
=1+ lMI PL(m) =1+ 4|M| PL,M(m).
|Cauer(L/M)|Pr/ae(m) |Cauez(L/M)|

The group L; is useful in proofs by contradiction that consider minimal coun-
terexamples, as then Py, pr(s) can be useful in proving that minimal counterexam-
ples do not exist.

4. What P;(s) Says About G

As evidenced by the formula

Z pe(H )

s k)
H<G G H|
Pg(s) is tied to the subgroup structure of the group G. Because of this, one can
think of it as encoding information about the structure of G. This section focuses
on examples of information one can gain about a group G solely from knowing the
Pg(s) function.

4.1. The primes dividing |G|. The first piece of data we can get from Pg(s)
is exactly which primes divide |G|. Damian and Lucchini [DamLul] proved that
if Pg(s) is written as Y %2 then:

ns b
THEOREM 4.1. A prime p divides |G| if and only if p divides n for some n with
an # 0.

4.2. The coset poset. Our second example is a case where it is advantageous
to view Pg(s) as having a domain greater than the non-negative integers. Brown
and Bouc [Br] found that letting s = —1 gives interesting topological information
about the group G. The coset poset C(G) is the set of cosets H (x € G and
H < @) ordered by inclusion. We can use a simplicial complex A(C(G)) whose
simplices are the finite chains in C(G) to define the Euler characteristic x(C(G)).
We may then define the reduced Euler characteristic x(C(G)) = x(C(G)) — 1. Then
Bouc discovered:

THEOREM 4.2. Pgs(—1) = —x(C(G)).

Moreover, Brown defined an analogue of Pg(s) for finite lattices (instead of
groups). Using this analogue, Brown shows that the entire Pg(s) function, not
only its value at s = —1, can be recreated from a lattice that is defined from the
coset poset C(G).

4.3. Solvability, supersolvability, and nilpotency. Since Pg(s) encodes
information about the structure of G, it is natural to wonder whether solvability
questions can be answered based solely on Pg(s). Gaschiitz [Ga] began working on
this question in the 1950s, and this question was completely answered by Detomi
and Lucchini [DeLu2] with the following theorem:

THEOREM 4.3. G is solvable if and only if Pg(s) is a product of factors of the
form 1 — (p,‘f—j)_q, where p; is a prime.

A group is supersolvable if it has an invariant normal series where all factors are
cyclic. Detomi and Lucchini also describe a condition for supersolvable groups.
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THEOREM 4.4. G is supersolvable if and only if Pg(s) is a product of factors
of the form 1 — ;—, where each p; is prime and each c; is positive.

This begs the question of whether a similar result exists for nilpotent groups,
but Gaschiitz demonstrated that no such result can exist. Indeed, the functions
Pg(s) for G = Cy x C3 x C3 (nilpotent) and for G = S3 x C3 (solvable, but not
nilpotent) are both equal to

26262

Therefore, it is impossible to determine nilpotency strictly from the Pg(s)
function. However, Damian and Lucchini [DamLu2] did find the following result
on nilpotency. First, define

Po(H,s)= Y. ‘ZL(;—)
H<K<g '™~

Then:

THEOREM 4.5. A group G is nilpotent if and only if Po(H,s) divides Pg(s)
for all H < G.

Finally, suppose that Pg(s) = > %. Then Detomi and Lucchini [DeLu2]
proved that G is solvable if and only if a,,, = ana,, whenever (n,m) = 1. Damian
and Lucchini [DamLul] were able to generalize this to p-solvable groups:

THEOREM 4.6. Suppose Pg(s) = ) %=. Then G is p-solvable if and only if
aprq = apraq whenever (p,d) = 1.

4.4. Simple groups. We now turn our attention to nonsolvable groups, the
results of which are found in [DamLu3, DamLu4, DamLuMo]|. All three papers
work toward the same result, which culminates in the following theorem:

THEOREM 4.7. Let G be a nonabelian finite simple group, let H be a finite
group with trivial Frattini subgroup, and assume Pg(s) = Py(s).

(1) If G is an alternating group or a sporadic simple group, then G = H.
(2) If G and H are groups of Lie type defined on a field of characteristic p,
then G = H.

Finally, Nigel Boston [Bo] conjectured that Pf,(1) = 0 whenever G is simple
nonabelian. This conjecture was proved and generalized by John Shareshian [Shar]
in the following theorem.

THEOREM 4.8. P5(1) =0 unless G/O,(G) is cyclic for some prime p.

5. Computing Pg(s)

While Pg(s) can be tedious to compute by hand, computer algebra systems
such as MAGMA and GAP can quickly generate the formula and numerical values
for Pg(s). The key to computing such a function for a group G is knowing its
subgroups, their indices, and the Mobius function. These can all be obtained from
MAGMA and GAP, although the subgroups are typically given as conjugacy classes.
Because of this, the length of each conjugacy class (that is, the number of subgroups
in each class) is also required.



6 BRET BENESH

The computer algebra system GAP offers a convenient shortcut for computing
examples of the Pg(s) function: it has a command to compute the table of marks.
Briefly, the table of marks of a group is a matrix whose entries describe the number
of fixed points when a representative of one conjugacy class of subgroups of G acts
on another via conjugation. The M&bius function can be determined from the table
of marks, as described by Pfeiffer in [Pf].

GAP makes it very easy to access this information from the table of marks. In
fact, a program—in its entirety—that computes the numerical answer to P(G, s) is:

P1:=function(G,s)
return EulerianFunctionByTom(TableOfMarks(G),s)/0Order(G) s;
end;

Creating a string that returns the formula is slightly more complicated, al-
though not much more so. Easy access to the Mobius function values, lengths,
and orders of the conjugacy classes of subgroups are gotten through the command
TableOfMarks (G) Below is a very basic program for GAP that returns the formula
as a string:

P2:=function(G)

local i,tom,mob,ord,len,finalstring;
tom:=Table0fMarks (G) ;
mob:=MoebiusTom(tom) .mu;
ord:=0rdersTom(tom) ;
len:=LengthsTom(tom) ;
finalstring:="";

for i in [1..Length(mob)] do
if IsBound(mob[i]) then
finalstring:=Concatenation(finalstring,"+",String(len[i]*mob[i]),
"/",String(Order(G) /ord[i]),""s);
fi;
od;

return finalstring;
end;

This particular program was designed for simplicity, and the resulting string lacks
a certain beauty. Because of this, readers are implored to add additional code to
make a more readable output. Additionally, shortcuts can be made for efficiency,
such as inserting the line of code G:=G/FrattiniSubgroup(G); at the beginning of
the program to take advantage of the fact that Pg(s) = Pg/a(q)(s)

The logic is similar when using MAGMA; the main difference is that MAGMA
does not have a command to access the table of marks, and cannot immediately ac-
cess the Mobius function of a group. However, the command SubgroupLattice(G)
contains the lengths and orders of the subgroups of G. Additionally, the com-
mand SubgroupLattice(G) contains information about the containment of the
subgroups, and one can use SubgroupLattice(G) and the recursive definition of
the Mobius function to create a function that returns the Mdébius value of a sub-

group.
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6. Conjectures and Open Problems

We conclude with several unsolved conjectures and avenues for exploration.

(1)

Shareshian [Shar] proved that P/ (1) = 0 for simple nonabelian G. Tt is
also true that P} (1) = 0. Describe all groups G such that Pg(1) = 0.
Boston [Bo] observes that Pg, (s) = Pa,(s)Pc,(s) for n = 2, 5, and 6
but not for n = 3, 4, 7, 8, and 9. Determine for which n the above
equation holds.
A generalization of the previous question: describe the nonabelian finite
simple groups S such that Ps(s) = Pauts.5(8)-
If Po n(s) # Pn(s), describe the possibilities for Pg n(s). Detomi and
Lucchini [DeLul] gave a partial answer to this challenge in 2003. Let L
be a finite group with unique minimal normal subgroup M. Then define
the following:

® PLJ(S) = PL,M(S) .

e Ppi(s) = Pr(s) — (1+q”'+|'1'\;$qf” D i1
where vy = |Cawt mL/M|, qpr = |Endp M| if M is abelian, and g5 = 1
otherwise. Detomi and Lucchini proved that each factor of Pg(s) is equal
to PL‘i(s) for some primitive monolithic group L and positive integer ¢,
thereby reducing the problem to the study of monolithic groups. Deter-
mine the possible values of Py, ps(s).

Similar to the earlier result on simple groups, we may conjecture:

CONJECTURE 6.1. IfG is a simple nonabelian finite group, H a finite
group with trivial Frattini subgroup, and Pg(s) = Pg(s), then G = H.

This conjecture would follow if the next conjecture were true. First, some
notation. Let

an(G) = Z “G(H)v

n=|G:H|
and let
| an(G) it pfn,
bn(G,p) = { 0 otherwise;
o>
bn (G,
finally, let P((;p)(s) = Z @ Then:
n
n=1

CONJECTURE 6.2. Let G be a group of Lie type. Except for finitely
many exceptions, a prime p is the characteristic of the defining field if and

only if ‘Pg’) (0)‘ is a nontrivial p-power.

Patassini [Pat] has provided some evidence that this conjecture is true.

There have been many theorems of the form “Pg n(s) > 7 whenever
s > f(G) for some constant v and some function f of G” (see for example
[DamLuMo, DeLuMo, LuMo, Pak]). Improve one of these bounds, or
determine similar bounds for Pg(s) (Pak [Pak] proves something similar
to this).
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Periodicities for graphs of p-groups beyond coclass

Bettina Eick and Tobias Rossmann

ABSTRACT. We use computational methods to investigate periodic patterns
in the graphs G(p, (d, w,0)) associated with the p-groups of rank d, width w,
and obliquity o. In the smallest interesting case G(p,(3,2,0)) we obtain a
conjectural description of this graph for all p > 3; in particular, we conjecture
that this graph is virtually periodic for all p > 3. We also investigate other
related infinite graphs.

1. Introduction

Which invariants are useful in the classification of p-groups?

The order has been considered in many publications, going back to the begin-
nings of abstract group theory in the 19th century; see [1] for a history. Nowadays,
the p-groups of order dividing 2% (see [5]) and p” (see [16]) are available, but a full
classification of the groups of order p™ in general still seems to be out of reach. An
important step towards a full classification would be a proof of the famous PORC
conjecture [7] which asserts that for fixed n, the number f(p) of p-groups of order
p" is a polynomial on residue classes.

Leedham-Green and Newman [14] suggested using the coclass to classify p-
groups. Recall that the coclass of a finite p-group G of order p™ and nilpotency class
cl(G) is defined as cc(G) = n—cl(G). A first and fundamental idea in classifying all
p-groups of a given coclass r is to visualize them in a graph G(p,r): the vertices of
this graph correspond to the isomorphism types of p-groups of coclass r and there
is a directed edge G — H if G = H/~qn)(H) holds, where +;(H) denotes the ith
term of the lower central series of H. The classification of all p-groups of coclass r
thus translates to an investigation of the infinite graph G(p,r).

Coclass theory has become a rich and interesting research field in group theory.
A highlight in this theory was the complete proof of the coclass-conjectures [14]
by Shalev [18] and Leedham-Green [11]. We refer to the book by Leedham-Green
and McKay [13] for background and details. Nowadays, the fundamental aim in
coclass theory is to prove that every graph G(p,r) can be constructed from a finite
subgraph using certain periodic patterns. This has been proved for p = 2 in [3] and
[4], but is still open for odd primes. A central problem in the odd prime case is that
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the graphs G(p, r) are usually rather thick and thus are often difficult to investigate
in detail. As a consequence, only very little detailed experimental evidence on the
structure of these graphs is available and explicit conjectures on the nature of any
useful periodic patterns are vague at present.

Leedham-Green thus suggested to try other invariants with a similar approach
as in coclass theory with the hope of obtaining graphs which have all the nice
features of the graphs G(p,r), but are thinner and thus easier to understand. In
particular, Leedham-Green initiated the classification of p-groups by rank, width
and obliquity; see Chapter 12 of [13] for a discussion. We briefly recall the definitions
of these invariants: for any finite or infinite pro-p-group G and a closed subgroup
H of G, let [G : HJ, denote the p-logarithm of the index [G : H]J; further let
d(G) = [G : ®(G)], be the cardinality of a minimal (topological) generating set
of G, and let u;(G) denote the intersection of all closed normal subgroups of G
which are not properly contained in 7;(G). Then we define for a pro-p-group G:

e its rank r(G) = sup{d(U) | U a closed subgroup of G},

o its width w(G) = sup{[7:(G) : 7i+1(G)], | ¢ € N}, and

e its obliquity o(G) = sup{[vi(G) : u;(G)], | i € N}.
The obliquity of a group determines how restricted its lattice of normal subgroups
is. In particular, in a group of obliquity 0 every normal subgroup lies between two
consecutive terms of the lower central series.

Let 7(G) denote the triple (r(G), w(G), o(G)) and define the graph G(p, (d, w, 0))
similar to the coclass graphs: the vertices of this graph correspond to the isomor-
phism types of finite p-groups G with 7(G) = (d,w,0) and there is a directed
edge G — H if G = H/vqu)(H) holds. The classification of all p-groups G
with 7(G) = (d,w, 0) now translates to understanding the (usually) infinite graph
G(p, (d,w,0)).

In this paper we discuss how computational tools can be used to investigate
the graphs G(p, (d,w,0)) and we exhibit experimental results for some small and
interesting cases. Thus, we give a conjectural description of the graph G(p, (3,2,0))
for p > 2 based on our experimental data. It suggests that G(p,(3,2,0)) can
be constructed from a finite subgraph using certain periodic patterns and hence
G(p, (3,2,0)) seems to have the nice features displayed by the coclass graphs G(2,7)
and, moreover, it is a rather thin graph which can be easily exhibited.

An interesting family of infinite pro-p-groups G' with finite 7(G) are the Sylow
pro-p-subgroups of Aut(L) for simple Lie algebras L of the type L = sf,(K) for
p > 3, where K/Q, is a finite extension. The lower central series quotients of such
a group G define an infinite path through the graph G(p, 7(G)). We show how our
computational tools can be used to investigate these infinite paths together with
certain branches associated with them. Our experiments with these infinite trees
indicate that they also exhibit periodic patterns of the same type as G(p, (3,2,0)).

Throughout this paper we assume that p is an odd prime.

2. Preliminaries

There is a correspondence between the infinite paths in G(p, (d,w,0)) and the
isomorphism types of infinite pro-p-groups G with 7(G) = (d,w,0). Hence a first
aim in understanding G(p, (d,w, 0)) is a classification of the infinite pro-p-groups G
with 7(G) = (d, w, 0). In this section, we recall some basic facts about these groups.



