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PREFACE

The field of combinatorial optimization has experienced a tremendous
growth in recent years. This is for instance documented by the publication of
- many new scientific jouniais in this area as well as by the considerable number
of large international conferences taking place every year.

Big meetings have the advantage of brmgmg a large number of people
together and making a quick exchange of new results possible. Due to the
(mostly) heCtic atmosphere, however, they do not provide: a platforrh for
discussing problems in detail and digging deep into new .aspects. This is the
purpose of a workshop where few people gather together and even fewer
people are given extensive time to present their ideas. Moreover, an informal
atmosphere not restricted by time limits makes a more profound discussion of
all aspects of the new developments possible.

From August 28 to August 30, 1980 the IV. Bonn Workshop on Com-
binatorial Optimization was held at the Rheinische Friedrich-Wilhelms-Uni-
versitit, Bonn. It was organized by the Institut fiir Okonometrie und Opera-
tions Research and generously sponsored by the Deutsche Forschungsgemein-

schaft through the Sonderforschungsbereich 21.

' Altogether 54 scientists from 16 different countries gathered af this meeting
in a highly stimulating atmosphere. This volume constitutes a part of the
outgrowth of the workshop and is based on the lectures presented there. The
papers cover a broad spectrum of the field from submodular functions to

~perfect graphs, and from vertex packing to scheduling and subtrec extension.
All papers were subjected to a careful refereeing process, -~ _

We would like to express our sincere thanks to all- authors for their
cooperation, to all referees for their outstanding (albeit anonvmous) con-
tributions, and to the editor and publishers of this series for their support of
this venture.

Bonn, October 1981 _ Achim BACHEM
Martin GROTSCHEL
Bernhard KORTE
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PARITY GRAPHS

M. BURLET
U.S.M.G., BP 53 X, 38041 Grenoble Cedex, France

J.P. UHRY &
Université Scientifique et Médicale CNRS, IMAG BP 53 X, 38041 Grenoble Cedex, France

A graph G = (V, E) is a parity graph if and only if for every pair of vertices (x, y) of G all
the minimal chains joining x and y have the same parity.

A characterization of these graphs can be given by a condition on the odd cycles: parity
graphs are just the graphs in which every odd cycle has two crossing chords. A theorem of
Sachs states that these graphs are perfect.

These graphs are then studied from the algorithmic viewpoint. Polynomial algorithms are
defined to recognize them, and to solve the following problems: maximum independent set,
minimum coloring, minimum covering by cliques, maximum clique.

1. Introduction

It is rather strange that, when a class of perfect graphs has been charac-
terized, the algorithmic aspect is seldom studied. In particular, there are not
only the classical problems of perfect graphs (finding a maximum stable set and
a minimum coloring), but also the major problem of recognizing such a class of
graphs in polynomial time. _

These problems remain unsolved for many classes of peifect graphs (Mey-
niel’s graphs [11], perfect 3-chromatic graphs [16], perfect plaiar graphs [15]).
The only exception is the general paper of Grotschel, Lovész and Schrijver [7]
which gives a polynomial algorithm for maximum weighted independent set
and minimum coloring for all perfect graphs. This algorithm based on the
ellipsoid method unfortunately gives no idea of the structure of perfect graphs,
and at the present time appears to be of no great combinatorial interest.

There exist classes of perfect graphs for which these problems are solved:
bipartite graphs and their line graphs, triangulated graphs, comparability
graphs, and their complements. The recognition problem is also solved for a
number of subclasses of these latter graphs (see [6]).

Finally there are classes of graphs for which these problems are not all solved
(for example perfect claw-free graphs ([8, 9, 12]), for which the recognition is
not yet settled, to our knowledge).



phs which is a fairly

), E(G)) be a graph with vertex set V(G) and edge’sct
ision is possible we will write V and E for V(G) and

Definition 1. A minimal chain is an elementary chain which is an induced
subgraph.

~ In the graph of Fig. 1, chains (x, z, £, v, y) and (x, 2, u, v, y) are minimal but
not, for example, (x, z, £, u, v).

Definition 2. The parity of a minimal chain is the parity of the number of its

In particular, if two vertices x and y are adjacent, the only minimal chain
joining them is the chain reduced to the edge (x, y); this chain is odd.

Definition 3. A (simple, undirected) graph G = (V, E) is called a parity graph
if, for every pair of vertices x and y of G, all minimal chains joining x and y
have the same parity.

Clearly, the notion of a parity graph generalizes that of a bipartite graph.
Cliques are non-bipartite parity graphs. The graph depicted in Fig. 2 is a less
trivial example. '

In Section 2 we prove that a graph G is a parity graph, if and only if each
odd cycle of length at least five contains two crossing chords. /A theorem of
Sachs [13] enables us to confirm that these graphs are perfect. -

_In Section 3 we prove some properties of these graphs, and we specify their
minimal separating sets. These results cin be compared to those of Gallai [5]
for o-triangulated graphs. : :

Fig. 1. ' Fig.2. -
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In Section 4 a polynomial algorithm for parity graph recognition is given. It
is also shown that these graphs are in fact built from two classes of perfect
graphs: bipartite graphs, and ‘cographs’ studied by Corneil, Lerchs and Stewart
[3], here called 2-parity graphs.

More precisely: the class of perfect graphs is closed under making true or
false twins (that is replacing a vertex by a set of two vertices linked or not by an
edge)’[10] and under certain extensions by bipartite graphs (cf. Definition 14).
It will follow that parity graphs are exactly those graphs arising by these
operations from a single point.

Finally, in Section 5, polynomial algorithms are defined for the four above-
mentioned problems (in cardinality and in weight). This will yield another
proof of the fact that these graphs are perfect.

2. Characterization
Definition 4. We say that two chords (x.y) and (z, 1) of an elementary c‘wle‘
cross, if the vertices x, z, y, I are different and in this order on the, cycle.

")
'Fheorem L. A graph G =(V, E) is a parity graph, if and only if every )y odd
etementary cycle has two ¢r0_mng chords.

Proof. Necessary condition: The condition is necessary for a cycle of 5.

Suppose we admit the property on an odd cycle of cardinality k (k > 5) and
prove it is still true for a cycle of cardinality k + 2. :

It is easy to check that such an odd cycle contains at deast two chords, and
two chords which do not cross create at least one odd cycle, whose cardinality
is lower than or equal to k, and the property follows by induction.

Sufficient condition: Take a graph G wihich verifies the condition and which
is not a parity graph. As the structure we want for G is hereditary (under
taking induced subgraphs) we shall choose a counter-example Wthh is minimal
with respect to the vertices. :

This counter-example has two vertices x and y joined by an even minimal
chain (x, uy, . . ., 4, y) and an odd minimal chain (x, v, .... v,, y) with s = 2 (cf.
Fig. 3).

Let

ig=min{i | 3j > 1: (w, v)) € E}, -
Jo= max{j | (u,, v,) € E}.

So ig<t and j,> 1, since the odd cycle formed by these two chains has two
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crossing chords by assumption. Now (4, Uj U+t - > Vs y) and
(1, Wysr, - . ., U, y) are minimal chains, having the same parity, as they are
contained in a smaller graph than G. Similarly, (x, ..., W, vy) and
(x, v1,. .., ;) have the same parity. However, the sum of the length of these

four chains, (s=jo+2)+ (= ip+ 1)+ (ip+ 1)+ jo=s+t+4, is odd, which is a
contradiction.

Theorem 2 (Sachs [13]). Parity graphs are perfect.
Without proof, we mention an obvious corollary.

Corollary 3. A graph G = (V. E) is a parity graph if and only if it does not

contain any of the following configurations as induced subgraphs:

- Asiyy odd cycle, without chord, on 2k + 1 vertices, k =2 (also called odd hole).

- A%y 0dd cycle, with only one short chord, on 2k + 1 vertices, k =2 (a short
chord is a chord giving birth to a triangle).

- A cycle on 5 vertices with two non-crossing chords.

Here, it seems interesting to recall two related results:

(a) the result of Gailai [5] and Surdnyi [14] that ‘o-triangulated graphs’ (in
which every odd elementary cycle contains at least two uncrossing chords) are
perfect, and

(b) the more general result of Meyniel [11] that each graph which has two
chords in every odd elementary cycle is perfect.
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In i"ig. 4, we give an example of a graph which contains two chords in each
of its odd cycles but which is, however, neither an o-triangulated graph nor a
parity graph.

Fig. 4.

3. Description and properties

_Notation, For a graph G =(V,E) and SC V we shall denote by G(S) the
subgraph induced by S. We denote by I'. the set of vertices adjacent to x,

e,
Ir,={ye Vv|(x,y)€ E}.

For AC V the intersection I, N A will be denoted by I'.(A). Occasionally,
when H = G(A) is a subgraph of G we shall write I',(H) for I'.(A).

Definition 5. We call two vertices x and y frue- twins if they are joined by an
edge and have the same adjacents except for x and y (that is, I\{y} = I\{x}).
Two vertices x and y are called false twins if they are not joined and have the
same adjacents.

By Lovédsz [10] we know that the operation which consists of adding one
(true or false) twin to a vertex of a perfect graph builds a new perfect graph.

In addition, this operation applied to a parity graph leaves a parity graph.
This is false, however for o-triangulated graphs (Fig. 5), but true again for
Meyniel graphs [11].

Definition 6. A graph without twins will be called prime.
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In Fig. 6 we give an example of the reduction of a panty graph, and an
example of a prime parity graph.

Definition 7. In a parity graph G = (V, E), thé partition induced by the vertex x,
denoted by (P, I;), is the ordered partition of the vertices of G into the classes
P, and I,, where P, (resp. I,) is the set of vertices of V joined to x by an even
minimal chain (odd minimal chain, respectively). We assume that x is joined to
x by an even minimal chain. ‘
7 Fis

_Notation. We may consider only the restriction of the b:pai'tmon induced by x
to a subset A of V. Then we denote: P,(A)=P,NA and/ ,(A) L.NA.

Lemma 4 Any. minimal separating set A of a parity graph G = (V, E) can bé -
partitioned into two parts denoted R and B which have the following praperty: the
vertices of R induce the same partition in V\A and the vertices of B the opposzté
partmon in V\A that is, ’

vr, vr,e R P,(V\A)=P(V\A) and hence I(V\A)=L(V\A),
VrER,Yb EB P(V\A)=L,(V\A) andhence I,(V\A)= P,(V\4A).

Proof. We suppose |A|> 1 (otherwise, it would be obvious). Let CX, and CX,
be two different connected components of the subgraph mduced on V\A (cf.
Fig. 7).

Let x; belong to CXj, x, belong to CX,, z and ¢t be two different vertices of
A. A being minimal there exist minimal chains C\(x,, x;) and Gy(x,, x;) joining
x; and x,, there only vertex from A being z for Ci(x,, x;) and t for C(xy, x3).
Because Cy(xy, x;) and Cy(x,, x;) have the same parity we have P(V\A)—
P.(VI\A) or P(V\A) = LL(V\A).
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Lemma 5. Let A be a minimal separating set partitioned into R and B as in
Lemma 4. If r,, , € R and (ry, r;) € E, then I',(V\A)=I(V\A).

Proof. Suppose the property is false, and let x € I',,(V\A) and x & I,(V\A) (cf.
‘Fig. 8). Then (r,, ry, x) is a minimal chain of even parity, and hence x € I, and
x € P,, contradicting Lemma 4.

Lemma 6. With the same hypotheses as those of the preceding lemma, if
rn, € R and (r, )€ E, then I',(B) = I',(B).

Proof. Suppose b; € I',(B) and b, & I'(B), and let x be a vertex in V\A joined
to b; (such a x exists by minimality of A) (cf. Fig. 9). As (r3, b1), (r;, x) and
(r;, x) are not in E, there is a minimal chain from r; to x with length two, and
another minimal chain from r, to x with length three. This contradicts Lemma
4.

Lemma 7. With the same hypotheses as before, a connected component of the
subgraph induced by the vertices of R has no minimal chain of length three.

Proof. Suppose there is such a chain (ry, rs, 13, r1). Let us consider a vertex x of
V\A which is adjacent to r;. From Lemma 5 we know that x is also adjacent to
ry, 13, and rs. The subgraph induced by these vertices is a 5-cycle, chords of
which may only come from x. This is a contradiction.

Remark 1. This property remains true if for the set R we take the adjacents of
any one of the vertices of a parity graph. (They form a separating set which
need not be minimaY,)

Definition 8. A 2-parity graph is a graph in which the length of all minimal
chains is at most two.

Fig. 8. Fig. 9.
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Examples of 2-parity graphs are cliques, and, more generally, complete
multipartite graphs (a complete multipartite graph is a graph in which the
vertices can be partitioned into stable sets, where two vertices are adjacent if
they belong to different classes. Such graphs are o-triangulated [5].

Below we give a characteristic property of a 2-parity graph (for other
properties, see [3]).

Lemma 8. A connected 2-parity graph with more than one vertex has at least two
(true, or false) twins.

Proof. For a clique, it is obviously true. Otherwise, let x and y be two vertices
which are not joined. There exists a minimal separating set A which separates
x from y.

Let CX, and CX, be their respective connected components, in the subgraph
induced by V\A.

- For each vertex z of CX,, z is adjacent to all the vertices of A, otherwise
there would be a minimal chain of length three.

When CX, = {x} and CX, = {y}, then x and y are false twins, else at least
one of CX, and CX, has cardinality greater than one, say |CX;|> 1. The proof
continues by induction in CX,. Twins in subgraph CX, will effectively be twins
in the initial graph, because they have the same adjacents in A.

Corollary 9. A graph is a 2-parity graph if and only if it arises from a single
point by adding true or false twins (cf. Fig. 10).

[

e

Fig. 10,



