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PREFACE

“Reading maketh a full man, conference; a ready man, and writing; an exact

man.
— Francis Bacon

In this book we have tried to give a balanced presentation of the theory and
practice of nonlinear regression.

We expect readers to have a working knowledge of linear regression at
about the level of Draper and Smith (1981) or Montgomery and Peck (1982).
Nevertheless, to provide background material and to establish notation, we give
a summary review of linear least squares in Chapter 1, together with a geometri-
cal development which is helpful in understanding both linear and nonlinear
least squares. On the practical side, we discuss linear least squares in the con-
text of modern computing methods and present useful material for checking the
assumptions which are involved in regression and for modifying and improving
fitted models. In Chapter 2 we discuss how nonlinear models can arise, and
show how linear regression methods can be used iteratively to estimate the
parameters. We also show how linear methods can be used to make approxi-
mate inferences about parameters and nonlinear model functions: again, the
geometry is emphasized. The practical aspects of nonlinear estimation are dis-
cussed fully in Chapter 3, including such topics as getting starting values,
transforming parameters, derivative-free methods, dealing with correlated resi-
duals and with accumulated data, and comparing models.

In Chapter 4 we cover special methods for dealing with multiresponse
data, and in Chapter 5, special techniques for compartment models in which the
response function is specified as the solution to a set of linear differential equa-
tions.

In Chapter 6 we discuss improved methods for presenting the inferential
results of a nonlinear analysis, using likelihood profile traces and profile ¢ plots.
Finally, in Chapter 7 we present material concerned with measuring how badly
nonlinear a particular model—data set situation is. This chapter is helpful in
understanding and appreciating the geometry of nonlinear least squares —and
indeed, of linear least squares.
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Extensive displays of geometrical constructs have been used to facilitate
understanding. We have also used continuing examples so that readers can fol-
low the development of ideas in manageable steps within familiar contexts.
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CHAPTER 1.

Review of Linear Regression

“Non sunt multiplicanda entia praeter necessitatem.”
(Entities are not to be multiplied beyond necessity.)

— William of Ockham

We begin with a brief review of linear regression, because a thorough grounding
in linear regression is fundamental to understanding nonlinear regression. For a
more complete presentation of linear regression see, for example, Draper and
Smith (1981), Montgomery and Peck (1982), or Seber (1977). Detailed discus-
sion of regression diagnostics is given in Belsley, Kuh, and Welsch (1980) and
Cook and Weisberg (1982), and the Bayesian approach is discussed in Box and
Tiao (1973).

Two topics which we emphasize are modern numerical methods and the
geometry of linear least squares. As will be seen, attention to efficient comput-
ing methods increases understanding of linear regression, while the geometric
approach provides insight into the methods of linear least squares and the
analysis of variance, and subsequently into nonlinear regression.

1.1 The Linear Regression Model

Linear regression provides estimates and other inferential results for the param-
eters B=(B;, B, ..., Bp)" in the model

Yn = B]xnl +B2xn2+ e +‘:JSPXnP +Zn
=W&n1s .- van)B'*"Zn

In this model, the random variable Y,,, which represents the response for case n,
n=1,2,..., N, has a deterministic part and a stochastic part. The determinis-
tic part, (x,, . ..,X,»)B, depends upon the parameters B and upon the predictor

(1.1)



2 NONLINEAR REGRESSION ANALYSIS

or regressor variables x,,, p =1,2,...,P. The stochastic part, represented by
the random variable Z,, is a disturbance which perturbs the response for that
case. The superscript T denotes the transpose of a matrix.

The model for N cases can be written

Y=XB+Z (1.2)

where Y is the vector of random variables representing the data we may get, X is
the Nx P matrix of regressor variables,

X1 X2 X3 T Xgp

X211 X2 X3 Tt Xop
X =

ANt XN2 XN3 Tt XNp

and Z is the vector of random variables representing the disturbances. (We will
use bold face italic letters for vectors of random variables.)

The deterministic part, Xp, a function of the parameters and the regressor
variables, gives the mathematical model or the model function for the responses.
Since a nonzero mean for Z, can be incorporated into the model function, we
assume that

E[Z]=0 (1.3)
or, equivalently,
E[Y]=XP
We therefore call XP the expectation function for the regression model. The
matrix X is called the derivative matrix, since the (n,p)th term is the derivative
of the nth row of the expectation function with respect to the pth parameter.
Note that for linear models, derivatives with respect to any of the parame-

ters are independent of all the parameters.
If we further assume that Z is normally distributed with

Var[Z]=E[ZZ"] = 6°1 (1.4)

where I is an NX N identity matrix, then the joint probability density function for
Y, given P and the variance 6°, is

-y-XBp'y-XB)
2062

2
=(2no?) ™2 exp { —ly-Xpl

p(yIB,o?) = (2nc?)™? exp [
(1.5)

20°

where the double vertical bars denote the length of a vector. When provided
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with a derivative matrix X and a vector of observed data y, we wish to make
inferences about 6 and the P parameters .

Example: PCB 1

As a simple example of a linear regression model, we consider the concen-
tration of polychlorinated biphenyls (PCBs) in Lake Cayuga trout as a
function of age (Bache et al., 1972). The data set is described in Appendix
1, Section Al.1. A plot of the PCB concentration versus age, Figure 1.1,
reveals a curved relationship between PCB concentration and age. Further-
more, there is increasing variance in the PCB concentration as the concen-
tration increases. Since the assumption (1.4) requires that the variance of
the disturbances be constant, we seek a transformation of the PCB concen-
tration which will stabilize the variance (see Section 1.3.2). Plotting the
PCB concentration on a logarithmic scale, as in Figure 1.2a, nicely stabil-
izes the variance and produces a more nearly linear relationship. Thus, a
linear expectation function of the form

In(PCB) =B, + B, age

could be considered appropriate, where In denotes the natural logarithm
(logarithm to the base e). Transforming the regressor variable (Box and
Tidwell, 1962) can produce an even straighter plot, as shown in Figure
1.2b, where we use the cube root of age. Thus a simple expectation func-
tion to be fitted is

o L
™

20 25
T T

PCB concentration (ppm)
10 15
T T

1 1 1 1 1 1
2 4 6 8 10 12
Age (years)

Figure 1.1 Plot of PCB concentration versus age for lake trout.
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Figure 1.2 Plot of PCB concentration versus age for lake trout. The concentration, on a
logarithmic scale, is plotted versus age in part @ and versus ‘yage in part b.

In(PCB) = B, + B, Yage
(Note that the methods of Chapter 2 can be used to fit models of the form
[ By =Bo+PBixt" +Box3” + - +Bpxp”

by simultaneously estimating the conditionally linear parameters 8 and the
transformation parameters a. The powers @,,...,0p are used to
transform the factors so that a simple linear model in x}", . .., xpt is ap-
propriate. In this book we use the power oe=0.33 for the age variable even
though, for the PCB data, the optimal value is 0.20.) W

1.1.1 The Least Squares Estimates

The likelihood function, or more simply, the likelihood, |(B,cly), for B and G is
identical in form to the joint probability density (1.5) except that /(B,cy) is re-
garded as a function of the parameters conditional on the observed data, rather
than as a function of the responses conditional on the values of the parameters.
Suppressing the constant (2m) ™2, we write

2
I(B.oly) e oV exp[ ﬂL

S (1.6)

The likelihood is maximized with respect to B when the residual sum of squares

sB) = ly-xpl’
2
_ ﬁ[yn—[ P x,,poH (1.7)
n=1 p=1
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is a minimum. Thus the maximum likelihood estimate ﬁ is the value of B which
minimizes S(B). This B is called the least squares estimate and can be written

B=X"X)"'XTy (1.8)

Least squares estimates can also be derived by using sampling theory,
since the least squares estimator is the minimum variance unbiased estimator for
B, or by using a Bayesian approach with a noninformative prior density on B
and 6. In the Bayesian approach, B is the mode of the marginal posterior densi-
ty function for B.

All three of these methods of inference, the likelihood approach, the sam-
pling theory approach, and the Bayesian approach, produce the same point esti-
mates for . As we will see shortly, they also produce similar regions of “rea-
sonable” parameter values. First, however, it is important to realize that the
least squares estimates are only appropriate when the model (1.2) and the as-
sumptions on the disturbance term, (1.3) and (1.4), are valid. Expressed in
another way, in using the least squares estimates we assume:

(1) The expectation function is correct.

(2) The response is expectation function plus disturbance.

(3) The disturbance is independent of the expectation function.
(4) Each disturbance has a normal distribution.

(5) Each disturbance has zero mean.

(6) The disturbances have equal variances.

(7) The disturbances are independently distributed.

When these assumptions appear reasonable and have been checked using
diagnostic plots such as those described in Section 1.3.2, we can go on to make
further inferences about the regression model.

Looking in detail at each of the three methods of statistical inference, we
can characterize some of the properties of the least squares estimates.

1.1.2 Sampling Theory Inference Results

The least squares estimator has a number of desirable properties as shown, for
example, in Seber (1977):

(1) The least squares estimator ﬁ is normally distributed. This follows
because the estimator is a linear function of ¥, which in turn is a linear function
of Z. Since Z is assumed to be normally distributed, B is normally distributed.

2) E[ﬁ] = PB: the least squares estimator is unbiased.

3) Var[f)] =0?(X"X)™": the covariance matrix of the least squares esti-
mator depends on the variance of the disturbances and on the derivative matrix
X.



