Leon Sterling
. Ehud Shapiro

el §

"ﬁﬁ‘-ung|[T m ;m\mll/
= ’\i;/ /A ,/ ¥\

Advanced
Progrqmmmg |
Techniques

8750764

The Art of Prolog

Advanced Programming Techniques

Leon Sterling

Ehud Shapiro P
rd 1 e

wsh \
4 W\

| . .

>
L2

y
/ @
/
&
\ Ry .
N
\\

i IMMIHIIHMI

E8760764

y
e

i

The MIT Press
Cambridge, Massachusetts
London, England

PUBLISHER’S NOTE

This format is intended to reduce the cost of publishing certain works in book form
and to shorten the gap between editorial preparation and final publication. Detailed
editing and composition have been avoided by photographing the text of this book

directly from the authars’ prepared copy.

© 1986 by the Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was set in Tgx by Sarah Fliegelmann
at the Weizmann Institute of Science

and printed and bound by The MIT Press

in the United States of America

Library of Congress Cataloging-in-Publication Data

Sterling, Leon.
The art of Prolog.

(MIT Press series in logic programming)
Includes index.
1. Prolog (Computer program language) I. Shapiro, Ehud Y. II. Title. III. Series.
QA76.73.P76574 1986 005.13°3 86-10529
ISBN 0-262-19250-0 (hard)
0-262-69105-1 (paper)

The Art of Prolog

8750764

To Ruth, Miriam, Michal, and Danya

Preface

The origins of this book lie in graduate student courses aimed at teaching
advanced Prolog programming. There is a wealth of techniques that has emerged
in the fifteen years since the inception of Prolog as a programming language. Our
intention in this book has been to make accessible the programming techniques
that kindled our own excitement, imagination and involvement in this area.

The book fills a general need. Prolog, and more generally logic programming,
have received wide publicity in recent years. Currently available books and ac-
counts, however, typically describe only the basics. All but the simplest examples
of the use of Prolog have remained essentially inaccessible to people outside the
Prolog community.

We emphasize throughout the book the distinction between logic program-
ming and Prolog programming. Logic programs can be understood and studied,
using two abstract, machine independent concepts: truth and logical deduction.
One can ask whether an axiom in a program is true, under some interpretation of
the program symbols; or whether a logical statement is a consequence of the pro-
gram. These questions can be answered independently of any concrete execution
mechanism. :

On the contrary, Prolog is a programming language, borrowing its basic con-
structs from logic. Prolog programs have precise operational meaning: they are
instructions for execution on a computer — a Prolog machine. Prolog programs
in good style can almost always be read as logical statements, thus inheriting
some of the abstract properties of logic programs. Most important, the result of
a computation of such a Prolog program is a logical consequence of the axioms
in it. Effective Prolog programming requires an understanding of the theory of
logic programming.

The book consists of four parts: logic programming, the Prolog language,
advanced techniques, and applications. The first part is a self-contained intro-
duction to logic programming. It consists of five chapters. The first chapter

xii Preface

introduces the basic constructs of logic programs. Our account differs from other
introductions to logic programming by explaining the basics in terms of logical
deduction. Other accounts explain the basics from the background of resolution
from which logic programming originated. We have found the former to be a
more effective means of teaching the material, which students find intuitive, and
easy to understand.

The second and third chapters of Part I introduce the two basic styles of
logic programming: database programming and recursive programming. The
fourth chapter discusses the computational model of logic programming, introduc-
ing unification, while the fifth chapter presents some theoretical results without
proofs. In developing this part to enable the clear explanation of advanced tech-
niques, we have introduced new concepts, and reorganized others. In particular
in the discussion of types and termination. Other issues such as complexity and
correctness are concepts whose consequences have not yet been fully developed in
the logic programming research community.

The second part is an introduction to Prolog. It consists of Chapters 6
through 13. Chapter 6 discusses the computational model of Prolog as opposed
to logic programming, and gives a comparison between Prolog and conventional
programming languages such as Pascal. Chapter 7 discusses the differences be-
tween composing Prolog programs and logic programs. Examples are given of
basic programming techniques.

The next five chapters introduce system-provided predicates that are essen-
tial to make Prolog a practical programming language. We classify Prolog system
predicates into four categories: those concerned with efficient arithmetic, struc-
ture inspection, meta-logical predicates that discuss the state of the computation,
and extra-logical predicates that achieve side-effects outside the computational
model of logic programming. One chapter is devoted to the most notorious of
Prolog extra-logical predicates, the cut. Basic techniques using these system
predicates are explained. The final chapter of the section gives assorted prag-
matic programming tips.

The main part of the book is Part IIl. We describe advanced Prolog pro-
gramming techniques that have evolved in the Prolog programming community,
illustrating each with small yet powerful example programs. The examples typ-
ify the applications for which the technique is useful. The six chapters cover
nondeterministic programming, incomplete data structures, parsing with DCGs,
second-order programming, search techniques, and the use of meta-interpreters.

The final part consists of four chapters that show how the material in the
rest of the book can be combined to build application programs. A common
request of Prolog newcomers is to see larger applications. They understand how

Preface xiii

to write elegant short programs but have difficulty in building a major program.
The applications covered are game-playing programs, a prototype expert system
for evaluating requests for credit, a symbolic equation solver and a compiler.

During the development of the book, it has been necessary to reorganize the
foundations and basic examples existing in the folklore of the logic programming
community. Our structure constitutes a novel framework for the teaching of
Prolog.

Material from this book has been used successfully for several courses on
logic programming and Prolog: in Israel, the United States and Scotland. The
material more than suffices for a one semester course to first-year graduate stu-
dents or advanced undergraduates. There is considerable scope for instructors to
particularize a course to suit a special area of interest.

A recommended division of the book for a 13-week course to senior under-
graduates or first-year graduates is as follows: 4 weeks on logic programming,
encouraging students to develop a declarative style of writing programs, 4 weeks
on basic Prolog programming, 3 weeks on advanced techniques, and 2 weeks spent
on applications. The advanced techniques should include some discussion of non-
determinism, incomplete data structures, basic second-order predicates, and basic
meta-interpreters. Other sections can be covered instead of applications. Appli-
cation areas that can be stressed are search techniques in artificial intelligence,
building expert systems, writing compilers and parsers, symbol manipulation, and
natural language processing.

There is considerable flexibility in the order of presentation. The material
from Part I should be covered first. The material in Part III and IV can be
interspersed with the material in Part II to show the student how larger Prolog
programs using more advanced techniques are composed in the same style as
smaller examples.

Our assessment of students has usually been 50% by homework assignments
throughout the course, and 50% by project. Our experience has been that students
are capable of a significant programming task for their project. Examples of
projects are prototype expert systems, assemblers, game-playing programs, partial
evaluators, and implementations of graph theory algorithms.

For the student who is studying the material on her own, we strongly advise
reading through the more abstract material in Part I. A good Prolog programming
style develops from thinking declaratively about the logic of a situation. The
theory in Chapter 5, however, can be skipped until a later reading.

The exercises in the book range from very easy and well-defined to difficult
and open-ended. Most of them are suitable for homework exercises. Some of the

xiv Preface

more open-ended exercises were submitted as course projects.

The code in this book is essentially in Edinburgh Prolog. The course has
been given where students used several different variants of Edinburgh Prolog,
and no problems were encountered. All the examples run on Wisdom Prolog,
which is discussed in the appendixes.

We acknowledge and thank the people who contributed directly to the book.
We also thank, collectively and anonymously, all those who indirectly contributed
by influencing our programming styles in Prolog. Improvements were suggested
by Lawrence Byrd, Oded Maler, Jack Minker, Richard O’Keefe, Fernando Pereira,
and several anonymous referees.

We appreciate the contribution of the students who sat through courses as
material from the book was being debugged. The first author acknowledges stu-
dents at the University of Edinburgh, the Weizmann Institute of Science, Tel Aviv
University, and Case Western Reserve University. The second author taught
courses at the Weizmann Institute, Hebrew University of Jerusalem and other
short courses to industry.

We are grateful to many people for assisting in the technical aspects of pro-
ducing a book. We especially thank Sarah Fliegelmann who produced the various
drafts and camera-ready copy, above and beyond the call of duty. This book may
not have appeared without her tremendous efforts. Arvind Bansal prepared the
index and helped with the references. Yehuda Barbut drew most of the figures.
Llax Goldberg and Shmuel Safra prepared the appendix. The publishers, MIT
Press, were helpful and supportive.

Finally, we acknowledge the support of family and friends without which
nothing would get done.

Introduction

The inception of logic is tied with that of scientific thinking. Logic provides a
precise language for the explicit expression of one’s goals, knowledge, and assump-
tions. Logic provides the foundation for deducing consequences from premises;
for studying the truth or falsity of statements given the truth or falsity of other
statements; for establishing the consistency of one’s claims; and for verifying the
validity of one’s arguments.

Computers are relatively new in our intellectual history. Similar to logic,
they are both the object of scientific study, and a powerful tool for the advance-
ment of scientific endeavor in general. Like logic, computers require a precise
and explicit statement of one’s goals and assumptions. Unlike logic, which has
developed with the power of the human thinking as the only external considera-
tion, the development of computers has been governed from the start by severe
technological and engineering constraints. Although computers were intended for
use by humans, the difficulties in constructing them were so dominant, that the
language for expressing problems to the computer and instructing it how to solve
them was designed from the perspective of the engineering of the computer alone.

Almost all modern computers are based on the early concepts of von Neu-
mann and his colleagues, which emerged during the 1940’s. The von Neumann
machine is characterized by a large uniform store of memory cells, and a process-
ing unit with some local cells, called registers. The processing unit can load data
from memory to registers, perform arithmetic or logical operations on registers,
and store values of registers back into memory. A program for a von Neumann
machine consists of a sequence of instructions to perform such operations, and an
additional set of control instructions, which can affect the next instruction to be
executed, possibly depending on the content of some register.

As the problems of building computers were gradually understood and solved,
the problems of using them mounted. The bottleneck ceased to be the inability
of the computer to perform the human’s instructions, but rather the inability of
the human to instruct, or program, the computer. A search for programming

xvi Introduction

languages convenient for humans to program in has begun. Starting from the
language understood directly by the computer, the machine language, better no-
tations and formalisms were developed. The main outcome of these efforts was
languages that were easier for humans to express themselves in, but still mapped
rather directly to the underlying machine language. Although increasingly ab-
stract, the languages in the mainstream of development, starting from assembly
language, through Fortran, Algol, Pascal, and Ada, all carried the mark of the
underlying machine — the von Neumann architecture.

To the uninitiated intelligent person, who is not familiar with the engineering
constraints that lead to its design, the von Neumann machine seems an arbitrary,
even bizzare, device. Thinking in terms of its constrained set of operations is a
non-trivial problem, which sometimes stretches the adaptiveness of the human
mind to its limits.

These characteristic aspects of programming von Neumann computers have
lead to a separation of work: there were those who thought how to solve the
problem, and designed the methods for its solution, and there were the coders,
who performed the mundane and tedious task of translating the instructions of
the designers to instructions a computer can digest.

Both logic and programming require the explicit expression of one’s knowl-
edge and methods in an acceptable formalism. The task of making one’s knowl-
edge explicit is tedious. However, formalizing one’s knowledge in logic is often
an intellectually rewarding activity, and usually reflects back on or adds insight
to the problem under consideration. In contrast, formalizing one’s problem and
method of solution using the von Neumann instruction set rarely has these ben-
eficial effects.

We believe that programming can be, and should be, an intellectually re-
warding activity; that a good programming language is a powerful conceptual
tool — a tool for organizing, expressing, experimenting with, and even communi-
cating one’s thoughts; that treating programming as “coding,” the last, mundane,
intellectually trivial, but time-consuming and tedious phase of solving a problem
using a computer system, is perhaps at the very roots of what has been known as
the “software crisis.”

Rather, we think that programming can be, and should be, part of the prob-
lem solving process itself; that thoughts should be organized as programs, so that
consequences of a complex set of assumptions can be investigated by “running”
the assumptions; that a conceptual solution to a problem should be developed
hand-in-hand with a working program that demonstrates it and exposes its dif-
ferent aspects. Suggestions in this direction have been made under the title “rapid
prototyping.”

Introduction xvii

To achieve this goal in its fullest — to become true mates of the human
thinking process — computers have still along way to go. However, we find it both
appropriate and gratifying from a historical perspective that logic, a companion
to the human thinking process since the early days of human intellectual history,
has been discovered as a suitable stepping-stone in this long journey.

Although logic has been used as a tool for designing computers, and for
reasoning about computers and computer programs since almost their beginning,
the use of logic directly as a programming language, termed logic programming,
is quite recent.

Logic programming, as well as its sister approach, functional programming,
departs radically from the mainstream of computer languages. Rather then being
derived, by a series of abstractions and reorganizations, from the von Neumann
machine model and instruction set, it is derived from an abstract model, which
has no direct relationship or dependency to one machine model or another. It is
based on the belief that instead of the human learning to think in terms of the
operations of a computer, which some scientists and engineers at some point in
history happened to find easy and cost-effective to build, the computer should
perform instructions that are easy for humans to provide. In its ultimate and
purest form, logic programming suggests that even explicit instructions for oper-
ation not be given but, rather, the knowledge about the problem and assumptions
that are sufficient to solve it be stated explicitly, as logical axioms. Such a set
of axioms constitutes an alternative to the conventional program. The program
can be executed by providing it with a problem, formalized as a logical statement
to be proved, called a goal statement. The execution is an attempt to solve the
problem, that is, to prove the goal statement, given the assumptions in the logic
program.

A distinguishing aspect of the logic used in logic programming is that a
goal statement typically is existentially quantified: it states that there exist some
individuals with some property. An example of a goal statement is that there
exists a list X such that sorting the list [3,1,2] gives X. The mechanism used to
prove the goal statement is constructive: if successful, it provides the identity
of the unknown individuals mentioned in the goal statement, which constitutes
the output of the computation. In the example above, assuming that the logic
program contains appropriate axioms defining the sort relation, the output of the
computation would be X=[1,2,9].

xviil Introduction

These ideas can be summarized in the following two metaphorical equations:
program = set of azioms

computation = constructive proof of a goal statement from the program

The ideas behind these equations can be traced back as far as intuitionistic
mathematics and proof theory of the early century. They are related to Hilbert’s
program, to base the the entire body of mathematical knowledge on logical foun-
dations, to provide mechanical proofs for its theories, starting from the axioms of
logic and set theory alone. It is interesting to note that the fall of this program,
which ensued the incompleteness and undecidability results of Gédel and Turing,
also marks the beginning of the modern age of computers.

The first use of this approach in practical computing is a sequel to Robin-
son’s unification algorithm and resolution principle, published in 1965. Several
hesitant attempts were made to use this principle as a basis of for a computational
mechanism, but they did not gain any momentum. The beginning of logic pro-
gramming can be attributed to Kowalski and Colmerauer. Kowalski formulated
the procedural interpretation of Horn clause logic. He showed that an axiom

A if By and By and ... and B,

can be read, and executed, as a procedure of a recursive programming language,
where A is the procedure head and the B;’s are its body. In addition to the
declarative reading of the clause, A is true if the B;’s are true, it can be read
as follows: to solve (execute) A, solve (execute) B; and By and ... and B,. In
this reading, the proof procedure of Horn clause logic is the interpreter of the
language, and the unification algorithm, which is at the heart of the resolution
proof procedure, performs the basic data manipulation operations of variable
assignment, parameter passing, data selection, and data construction.

At the same time, early 1970’s, Colmerauer and his group at the University of
Marseille-Aix developed a specialized theorem prover, written in Fortran, which
they used to implement natural language processing systems. The theorem prover,
called Prolog (for Programation et Logique), embodied Kowalski’s procedural
interpretation. Later, van Emden and Kowalski developed a formal semantics for
the language of logic programs, showing that its operational, model-theoretic, and
fixpoint semantics are the same.

In spite of all the theoretical work and the exciting ideas, the logic program-
ming approach seemed unrealistic. At the time of its inception, researchers in the
U.S. began to recognize the failure of the “next-generation AI languages,” such
as Micro-Planner and Conniver, which developed as a substitute for Lisp. The
main claim against these languages was that they were hopelessly inefficient, and

Introduction Xix

very difficult to control. Given their bitter experience with logic-based high-level
languages, it is no great surprise that U.S. Al scientists, when hearing about Pro-
log, thought that the Europeans are over-excited over what we, Americans, have
already suggested, tried, and discovered not to work.

In that atmosphere the Prolog-10 compiler was almost an imaginary being.
Developed in the mid to late 1970’s by David H.D. Warren and his colleagues, this
efficient implementation of Prolog dispelled all the myths about the impracticality
of logic programming. That compiler, which is still one of the finest implemen-
tations of Prolog around, delivered on pure list-processing programs performance
comparable to the best Lisp systems available at the time. Furthermore, the com-
piler itself was written almost entirely in Prolog, suggesting that fairly classical
programming tasks, not just sophisticated AI applications, can benefit from the
power of logic programming.

The impact of this implementation cannot be over-exaggerated. Without it,
the accumulated experience that has lead to this book would not have existed.

In spite of the promise of the ideas, and the practicality of their implemen-
tation, most of the Western computer science and Al research community was
ignorant, outwardly hostile, or, at best, indifferent to logic programming. By
1980, the number of researchers actively engaged in logic programming were only
a few dozens in the U.S., and about one hundred around the world.

No doubt logic programming would have remained a fringe activity in com-
puter science for quite a little longer were it not for the announcement of the
Japanese Fifth Generation Project, which took place in October 1981. Although
the research program the Japanese have presented was rather baggy, faithful to
their tradition of achieving consensus at almost all cost, the important role of logic
programming in the next generation of computer systems was presented loud and
clear.

Since that time the Prolog language has undergone a rapid transit from
adolescence to maturity. There are numerous commercially available Prolog im-
plementations on most widespread computers. There is a large number of Prolog
programming books, directed to different audiences and emphasizing different as-
pects of the language. And the language itself has more-or-less stabilized, having
a de facto standard, the Edinburgh Prolog family.

The maturity of the language means that it is no longer a concept for sci-
entists yet to shape and define, but rather a given object, with all its vices and
virtues. It is time to recognize that, on the one hand, Prolog is falling short of
the high goals of logic programming, but that, on the other hand, it is a powerful,
productive, and practical programming formalism. Given the standard life cy-

XX Introduction

cle of computer programming languages, the next few coming years will witness
whether these properties will show their merit only in the classroom or will also
be proven useful in the field, where people pay money to solve problems they care
about.

So what are the current active subjects of research in logic programming and
Prolog? The answer to this question can be found in the regular scientific journals
and conferences of the field. The Logic Programmang Journal, the Journal of New
Generation Computing, the International Conference on Logic Programming, and
the IEEE Symposium on Logic Programming, as well as in the general computer
science journals and conferences.

Clearly, one of the dominant areas of interest is the relationship between
logic programming, Prolog, and parallelism. The promise of parallel computers,
combined with the parallelism that seems to be available in the logic programming
model, have lead to numerous attempts, which are still ongoing, to execute Prolog
in parallel, and to devise novel concurrent programming languages based on the
logic programming computation model. This, however, is a subject for another
book.

Contents

Preface xi
Introduction XV
Part I. Logic Programs 1
Chapter 1: Basic Constructs 2
1.1 Facts 2
1.2 Queries 3
1.3 The logical variable, substitutions and instances 4
1.4 Existential queries 5
1.5 Universal facts 6
1.6 Conjunctive queries and shared variables 7
1.7 Rules 8
1.8 A simple abstract interpreter 12
1.9 The meaning of a logic program 15
1.10 Summary 16
Chapter 2: Database Programming 19
2.1 Simple databases 19
2.2 Structured data and data abstraction 25
2.3 Recursive rules 28
2.4 Logic programs and the relational database model 30
2.5 Background 32
Chapter 3: Recursive Programming 33
3.1 Arithmetic 33
3.2 Lists 43
3.3 Composing recursive programs 51

3.4 Binary trees 57

