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Preface

In this book we aim to give the reader an appreciation of how mathematical
models are formulated, solved and applied, and a concise description of basic
mathematical techniques. Each mathematical topic is motivated with a case study;
the mathematical technique is presented; the case study solved; and further case
studies described. Problems have been set to test the reader’s comprehension;
and hints and solutions are provided.

The case studies have been taken mainly from management, biology,
economics, planning, and sociology: hence our description of the book as ‘an
account of models in the non-physical sciences’ may be seen to be fully justified
and earned by its content.

It is written for students in the above disciplines who need a practical course
in applying mathematics, and for mathematics students and teachers who want to
see the importance of mathematical concepts in a variety of realistic situations.

We have tried to avoid burdening the reader with too many mathematical
proofs, at the same time not attempting to conceal any mathematical difficulties,
which are fully explained in the text. Our feeling is that over-emphasis of
mathematical rigour would detract from our aim of providing an appreciation
of the role of mathematics in society today.

In making corrections we wish to thank Mr R. Morrisson of Coldingham,
Berwickshire, and various students at N.I.H.E. Dublin for drawing our attention
to misprints and errors.

David Burghes
Alastair Wood
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CHAPTER 1

Mathematical Modelling:
Aims and Philosophy

1.1. MATHEMATICS AND SOCIETY

Few people will deny that the most spectacular successes of mathematics have
been in the physical sciences. We have, for instance, the mathematical prediction
of the existence of heavenly bodies, subsequently verified by observation, or, in
earlier centuries, the formulation of the laws of motion of various bodies. On a
more practical level, it could even be claimed that the spread of modern industrial
civilisation, for better or for worse, is partly a result of man’s ability to solve
the differential equations which govern so many of our industrial processes, be
they chemical or engineering.

But over the last few decades mathematics has broken out into a whole new
range of applications in the social sciences, biology and medicine, management
and, it seems, almost every field of human endeavour, providing qualitative, if
not quantitative models where none had existed or even been contemplated
before. Mathematical techniques now play an important role in planning,
managerial decision-making, and economics, which has probably been the longest
quantified of the social sciences.

Do we all understand the same thing by ‘mathematics’? The man in the
street will tend to equate mathematics with arithmetic. But what will children
recently exposed to ‘modern mathematics’ syllabuses in some primary schools
equate mathematics with? The engineer will tend to think of the techniques of
calculus used to compute solutions to problems. The businessman may think
simply of book-keeping. The medical or experimental worker will come up with
computers or statistics.

All of these are in part correct, such is the diversity of mathematics, although
its unity becomes more obvious with deeper study. Even mathematicians cannot
agree. Some, who are usually called applied mathematicians, see mathematics
entirely as a model for the physical world. In their view the motivation towards
innovation in mathematics arises from the needs of physics. For instance,
physicists required a function, with the property that
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J _8)f()dx = f(0)
for a wide class of functions. It was found that § could not exist as an ordinary
function, and this led to the development of the theory of generalised functions
or distributions.

At the other extreme is the type of pure mathematician who sees mathe-
matics as a formal language constructed from distinct symbols which can be
strung together according to well-defined rules to make formulae which have
a unique interpretation. Certain formulae are labelled axioms, and others are
constructed from them by applying rules of inference. A sequence of such
formulae forms a proof. The whole structure of pure mathematics can be
set up in this way from a very few axioms, such as ‘if X is contained in ¥ and
Y is contained in X, then X equals Y. By and large the mathematics constructed
in this way fits the physical requirements, and occasionally precedes its
physical application, for example Kepler’s work on the ellipse anticipated an
understanding of planetary motion.

Whatever viewpoint we adopt, we must agree on the necessity of having a
clear, concise language for transferring thoughts about relatively subtle ideas
which may previously have been vague or non-existent. New mathematics is not
discovered, but invented: it does not exist until it has been communicated
between people. The language must be versatile enough to allow a school-teacher
to clarify a point for a pupil while at the same time allowing researchers to be
sure that a new result is proved without mistakes.

The contemporary language of mathematics manipulates such basic
notions as sets, functions and relations and describes constructions using them.
Mathematics is usually laid out according to the following convention.

(i) Definition: this describes a new entity in terms of those that have been
defined previously.

(ii) Theorem: this is a statement giving an answer (unfortunately not always
complete) to questions raised about these entities. A theorem is
sometimes called a Proposition, Corollary, or Lemma.

(iii) Proof: This gives a record of the manipulations necessary to convince
the reader that a theorem is a true statement,

Many people regard only these manipulations as mathematics, but the task
of formulating the questions and describing the entities is just as important,
particularly where modelling is concerned. Ordinary language, for example
elementary English, is too imprecise. Suppose that you have never seen a dog
and try to find out exactly what it is by using a dictionary. The definition rapidly
becomes circular, as we see below:
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A ‘dog’ is an ‘animal’

An ‘animal’ is a ‘being’

A ‘being’ is ‘something which exists’
To ‘exist’ is to ‘occur’

To ‘occur’ is to ‘exist’.

There are many paradoxes in the English language. For instance, can you
decide whether the statement ‘I am lying’ is true or false? The advantages of
using mathematical language in any situation, but particularly in the new areas
mentioned in our introductory paragraphs, may be listed as follows:

(i) The mathematical language is more efficient and less bulky than the written
word; it reveals the assumptions being made in their naked simplicity in a
way which words do not do efficiently.

(ii) It is more difficult to cheat conclusion with a mathematical argument. The
results of a mathematical debate are precise and depend only on the initial
assumptions. For a given set of assumptions the mathematical conclusions
are accurately expressed, and their results cannot be argued with. It is the
assumptions that can and should be criticised.

(iii) With a mathematical description it is possible to arrive at optimal solutions,
which would not be obvious without the analysis.

It probably has some disadvantages too. Much time and effort can be spent
trying to find solutions for rather irrelevant problems, problems which are so far
removed from reality that their solutions have little meaning. In many cases a
manager’s practical experience and intuition will enable him to make better and
quicker decisions than those available to him through a mathematical analysis
of the problem. Nevertheless mathematical analysis has had some important
successes. For example the technique of linear programming has been extensivly
used in transportation problems leading to significant savings in costs; differential
equation theory has been used to make precise decisions in glucose tolerance
testing for diabetics; and matrix methods are employed in the estimation of
future population trends.

Thus we conclude that mathematics has an important role to play in a wide
range of applications, so long as we are realistic about what it cannot do, as well
as what it can do.

1.2. MATHEMATICAL MODELLING - ITS ROLE AND LIMITATIONS

The underlying theme in all applications of mathematics to real situations
is the process of mathematical modelling. By this we mean the problem of
translating a real problem from its initial context into a mathematical descrip-
tion, that is, the mathematical model. This mathematical problem is then solved,
and the resulting mathematical solutions must be translated back into the original
context. The main stages in the modelling process are summarized in Fig. 1.1.
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1 2 3
Formulate . Assdun:lptlon . Forn;ulate_ |
“real’”’ problem made in mathematica
model problem
/ \
4
s * 1L
N\
6 5
i o Solve
ﬁfjte —~ Igtli';?(;ﬁt ~ mathematical
s problem
Use model to
explain, predict,
decide or design
Fig. 1.1.

The left-hand column represents the real world, the right-hand column the
mathematical world, and the middle column the connection between these two
worlds where firstly the problem is simplified and formalised and secondly the
mathematical solution is translated back into the real world situation.

In a straightforward modelling process we move from box 1 to box 7 in
sequence, but most modelling is nor straightforward. We often need to
concentrate and spend significantly more time on particular stages. The model
is sometimes not adequate for its purpose, and we must move from box 6 back
to box 2 and repeat the process, using a more sophisticated model. In many
cases, particularly in the social sciences, it is difficult to apply box 6 at all, and
we move straight from box 5 to box 7. In other cases it might not be possible to
solve the mathematical problem, the mathematics being too complicated to deal
with. In this case we retum to box 2 and weaken the assumptions. This of course
takes us further from the real situation, but leads to an easier mathematical
analysis. Whether or not the model is useful will become apparent when we
reach box 6 and attempt to validate it.

We can summarise the main stages of modelling into formulation, solution,
and application. The formulation stage is covered by boxes 1, 2 and 3, the
solution stage by box 4, and the application stage by boxes 5, 6 and 7. All these
stages are important in modelling. We must, though, emphasise that not all
modelling will follow this exact pattern. This is just a guide to what modelling is
about.
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1.3 CASE STUDY

As a simple example to illustrate the modelling process we will consider the
problem of a London-based managing director whose company has a factory
near the centre of Manchester. Early one morning he is woken by a telephone
call from the Manchester factory, where there has been a major industrial dispute
during the night shift, and in order to prevent a total walkout of the day staff
and a consequent shutdown of the production process (which would be very
costly) he is required at the factory in Manchester as soon as possible. What is
his problem? To get from his home in the suburbs of London to the factory in
Manchester in minimum time. What are his possibilities? To travel by car, train,
or plane. So his problem is to choose the form of transport that will get him to
his destination as quickly as possible.

We now move from box 1 to box 2 in terms of the modelling diagram in
Sec. 1.2 and formulate the model. Each type of journey can be divided into
three parts, the time from his home to the starting point of the transport,
including the waiting time for the transport, the time on the particular form of
transport and the time required from the transport’s stopping place to the final
destination. To put this into mathematical terms let 7; denote the time required
for the ith mode of transport where

i = 1 refers to car,
2 refers to train,
3 refers to plane.

~
1]

~
Il

Then

T, =a; +b; t¢

where

K
I

time to get from initial point to start of transport / and
waiting time;

b; = time on transport i;

¢; = time from stopping point of transport i to final destination.

In terms of our original modelling diagram we are now moving into box 3.
Before we do so it is important to note that we are setting up a general frame-
work which will solve not only this particular managing director’s problem but
any problems of a similar nature.

On to box 3. Here we state the problem in mathematical terms. We require
to find the value of i (1, 2 or 3) which minimises the function 7}, and we can
immediately move on to box 4 and write the solution as

i, where T; = min (T3, 75, T3)

where the notation
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min (X, X,, X3,... X,;)

means choosing the number x; which is less than all other x values. So our
mathematical world is soon dealt with and requires little sophistication. We
just need to compare the values T, T,, T3, and choose the minimum one. The
next box is straightforward as well. The interpretation of solution i is that the
transport labelled i should be used. There is little we can do to validate the model,
and so we move straight on to box 7 and apply the model to the managing
director’s problem.

The map below illustrates the geographical problem. The managing director
lives just outside London at Romford in Essex, and the factory is close to the
centre of Manchester. We now estimate each function T3.

i=1:CAR
Clearly for this form of transport a; = ¢; = 0, and we just need to evaluate b;, the
actual journey time in the car.

>

MANCHESTER

M1
Romford

L
LONDON

MOTORWAY
et RAILWAY
@ AIRPORT

Fig, 1.2

There is first a journey on minor roads across to the M1 which he estimates
to take 70 minutes. This is followed by 170 miles of driving at 70 m.p.h. which
will take

70
—— hours = 146 mins.
70



