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Author’s Introduction

Recently, substantial advances have been made toward the solution of certain
important problems of mechanics related to volumetric reduction and the
improvement of the mechanical properties of structures.

The concepts of the “best” structures, in one sense or another, and of criteria
that are assigned to their performance have been generalized. Numerical
optimization techniques have also been improved, thus permitting us to
formulate effective estimates of sensitivity of some of the important structural
properties to changes in design parameters, and thus to analyze techniques
for obtaining optimal solutions. Such results permit, at least in part, one to
make extensive use of optimization techniques for the eventual establishment
of automated (i.e., computer-assisted) design of systems. However, there are
many unsolved problems in optimal design theory that are now being inten-
sively studied.

This volume contains an exposition of some of the fundamental concepts,
as well as an attempt to present the “state of the art” in the theory of optimal
design. It consists of two parts. The purpose of the first part is to introduce
the reader to the theory and techniques of optimal design. Here we offer an
exposition of problems of optimal design and techniques for transforming
them, necessary conditions for optimality, analytic and numerical methods
for optimization of structural systems with distributed parameters, and opti-
mization techniques for discrete systems. We consider problems of designs
with multiple objectives, designs with incomplete information, and also funda-
mental concepts for designs with multiple optimality criteria.

The second part of this book is primarily devoted to applying the individual
criteria of strength, rigidity, stability, and weight to optimization processes.
Here we examine optimal design solutions for beams, curved rods, trusses,
plates, and shells, and for large (heavy) bodies that may be obtained by the
use of such specific criteria.

This book also utilizes results of research from the Laboratory for Structural
Optimization in the Institute for Problems in Mechanics in the USSR Academy
of Sciences.
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viil Author’s Introduction

A substantial part of the material presented in this book originated with
lectures given by the author to the students of the Physico-Technical Institute
in Moscow.

The author offers his sincere thanks to A.Tu. Ishlinskii, who helped in
formulating the overall theme of the present book and also supported sub-
sequent work.

The author also wishes to acknowledge the assistance of B.D. Annin, N.H.
Artunian, A.A. Barsuk, V.I. Biriuk, V.V. Bolotin, V.V. Vasiliev, S.Iu. Ivanov,
V. Komkov, LI. Koande, V.V. Kobelev, A.D. Larichev, V.P. Malkov, I.F.
Obraztsov, A.G. Ugodchikov, V.M. Frolov, E.J. Haug, and A.V. Sharaniuk
for their advice and comments on specific problems, and V.I. German, E.V.
Makeev, M.V. Selishcheva, and, in particular, A.G. Mishina for their con-
siderable efforts in the preparation of the manuscript.

Moscow, USSR N.V. Banichuk



Translator’s Notes

A number of monographs dealing with the distributed parameter aspects of
mechanical and structural optimization has appeared in the 1984 to 1988 time
period. These include the Haug—Choi—Komkov monograph [55],! a transla-
tion of Banichuk’s book [8], the Pironeau monograph [67], the Troitskii—
Petukhov study [48], the Bogomolov—Simpson monograph [11], and Vol-
ume II of Komkov’s monograph [57]. Expository works and long articles
related to these topics include [53], [63], [65], [66], and [71]. They reinforce
some older surveys, such as the excellent survey of Haug given in [23], the
Olhoff survey of 1986 [63], the survey of Komkov [26] given at the meeting
of the American Mathematical Society in 1983, the Niordson—Pedersen review
[30] of 1973, Prager’s work [37] of 1972, a shorter review by Venkayya [51],
and the Brandt—Wasiutynski review [52] of 1963. A comparison of the recent
and older monographs and surveys reveals an accelerated pace of ideas, and
the steady incorporation of increasingly more sophisticated mathematical
techniques and of new relevant physical data. The mathematical research of
R.V. Kohn, Kohn and Vogelius, and Kohn and Strang established theoretical
foundations for the “homogenization” of structural designs, an important
aspect of shape optimization. Cea, Rousselet, Haug, Choi, Olhoff, and the
author of the present study contributed significantly to a better understanding
of the optimization of the stability of structural systems, which is absolutely
essential in designs of slender aerospace-type structures and in earthquake-
resistant designs.

The present monograph provides another and more recent presentation of
the “state of the art” by a leading expert in this field. It concentrates on
“difficult” aspects of systems with distributed parameters and on continuum
mechanics, in general, as opposed to a discretized approach to structural
design.

In some respects the distributed parameter theory is essential as a proper
modeling background for discrete representation of many physical and engi-

! The references cited here are incorporated into the general bibliography given at the
end of this monograph.



p.4 Translator’s Notes

neering systems. Much of the theory offered in the present monograph is
essential to efficient discretization schemes for structural designs and to the
construction of numerical algorithms. Although this theory has outpaced the
adaptation of relevant computing algorithms, it is the opinion of the translator
that recent developments in rapid computational technology, particularly in
the parallel computing field, have created a new environment for imaginative
uses of this theory in computer-assisted design of very large and complex
structural systems.

Wright Patterson Air Force Base, Ohio Vadim Komkov
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Part 1
The Theory and Techniques of
Structural Optimization






1

Fundamental Concepts and
Problems of Optimal Design

1.1 The Choice of a Computational Scheme in the Theory
of Optimal Design

The focus of the theory of optimal design is on the best possible choice of a
system of forces, the shape and properties of materials, and the working
environment for a structure. The study of general laws governing extremal
solutions and the development of effective optimization techniques are also
part of the theory of optimal design.

Research in design has made it possible to describe the maximal potential
for of structural improvement, to estimate the quality of traditional (non-
optimal) reinforcements, and to discover the most effective ways of improving
these reinforcements. There is a great variety of problem statements in optimal
design (cf. [5], [14], [24], and [44]), perhaps because the equations for the loads
and deflections of a structure, and the constraints imposed on its expected
mechanical properties substantially differ from one type of structure to the
next (beams, columns, curved beams, plates, or shells), between the different
rheological properties (elasticity, plasticity, creep), the different external loads
(such as surface loads, body forces, static, or dynamic loads, “dead loads,”
loads that depend on the behavior of the structure itself, or the thermal loads),
the different types of control variables (such as variables controlling the shape
of a structure), different assumptions for measuring the completeness of infor-
mation available on the working environment (i.e., problems with incomplete
information concerning interaction between the structure and the external
environment, or concerning the manner of supporting the structure). The
accuracy of the model and of the relevant data also influences the formulation
of such problems.

The choice of a computational scheme (i.e., model) is essential to both the
analysis and the optimization of a structure. Therefore, optimization of design
is impossible without first conducting a preliminary study of the assumptions
made about both the real and imagined aspects of the structural response,
and before preparing a scheme describing the working conditions, and before
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making various simplifications that would still preserve the adequacy of the
computational scheme for a real-life structure. A mathematical model of the
real behavior of an object stripped of all unrealistic properties or assumptions
shall be called in this presentation “a computational scheme.”

Such a description of computational schemes routinely takes place in
typical strength of materials courses (e.g., [39]). But, in fact, the choice of
computational scheme is not unique.

In some cases several differing schemes may be offered for the study of the
same object. On the other hand, a single computational scheme may model
several different real-life objects.

In design optimization one tries to apply computational schemes that
would uniquely determine the relevant quantities of stress-deformed states, as
well as specific values of the design variables.

However, this is not always possible to achieve, either because of the absence
of exact data concerning the external loads, or incompleteness of the data
concerning the manufacture of the product, the distribution of parameters
that describe the materials of the structure, or other factors contributing to
the incompleteness of information. To produce an adequate scheme in such
a situation it makes sense to relax the demands of an “exact” description of a
real-life object and to adopt either a computational scheme for the structure
that assumes the worst possible scenario or else to adopt a scheme of stochastic
description. These are the so-called “guaranteed” and “probabilistic” ap-
proaches to the adoption of a computational scheme.

With regard to the geometric aspects affecting the choice of a computational
scheme, we shall discuss only the most commonly used schemes in the theory
of optimal structural design. One may model a solid three-dimensional body
whose characteristic dimensions are of the same order of magnitude in each
spatial direction. Bodies having one of these dimensions “substantially larger”
than the other two (such as rods, arches, or systems of beams) and bodies
having one dimension “substantially smaller” that the other two dimensions
(such as shells and plates) comprise the remaining two cases.

The general setting may vary in optimal design theory. It does depend
substantially on the type of the designed structure; that is, is this a traditional
structure, or is it an entirely new design? In the first case much useful informa-
tion is available concerning the prototypes and much of the accumulated
experience may be utilized in the form of a “support” solution, or perhaps as
the initial approximation for the optimal design process. In that case only a
few design parameters are regarded as unknown and optimization of the
structure is accomplished with a relatively small number of basic design
variations. In the second case the design is determined by a large number of
design variables and the optimization process has to be carried out by con-
sidering a large number of admissible variations (ie., of separate design
projects). A degree to which the parameters are regarded as known, or con-
versely, the absence of any knowledge concerning the design parameters that
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would determine either the exterior shape or the internal properties of a
structure is an important factor in determining the computational scheme.

The stage in the computational scheme in which the important unknown
variables appear for the first time is critical, and in general, determines the
effects of optimization procedures. The introduction of the design parameters
frequently amounts to a stipulation of some additional requirements for the
computational scheme. Let us clarify the last statement by offering an example
of an optimal design of a thin shell with variable thickness. In the optimization
we will use the classical theory of elastic thin shells. If, as an outcome of the
optimization process, we obtain a distribution of the thicknesses having large
gradients or having some singularities (such as discontinuities, a “zero,” or an
“infinite” thickness), the classical computational scheme is not valid and
therefore one must introduce appropriate corrections.

Here the possible corrections are of two principal types:

1. An open introduction into the computational scheme of new constraints
that are necessitated by the accepted theory, and the subsequent use of these
constraints during the design process. This operation amounts to a “tight-
ening” of the set of admissible design projects.

2. A “broadening” and generalizing of the classical computational schemes by
taking into account trends that tend to alter the design projects, thus
permitting an analysis of a larger class of admissible structures.

In choosing a computational scheme for optimal design problems an im-
portant role is played by the a priori knowledge of properties of the unknown
solution. Information about the model, knowledge of some basic properties
of the solution, and also a reexamination of the initial hypotheses all permit
us to state some essential constraints in the formulation of the optimization
problems and to exclude “second layer” considerations, making it possible to
state the problem in proper form to apply some of the well-known numerical
or even analytical techniques.

Therefore, a large body of results in the theory of optimal design is directly
connected with some well-known computational schemes. However, it is
frequently quite difficult to “guess” in advance the properties of the unknown
optimal solution, and the optimization problem may turn out to be formulated
so that the derived solutions violate the fundamental hypotheses essential to
the model itself. For example, certain solutions of problems of plate design
may have large gradients of thickness. This contradicts some of the assump-
tions that are fundamental to Kirchhoff’s plate theory. Other well-known
singularities arising in the use of classical models of plates and shells are caused
by, the presence of either zero or infinite thickness in the optimal solution.
Thus, if one discovers a deviation from the model or a violation of hypotheses
that are essential to the computational scheme, it becomes necessary to modify
the system of relations used in a design procedure by the introduction of
additional constraints, for example, on thickness in a problem concerning the
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bending of plates. Another method of escaping from such a situation may
involve a generalization of the model, consisting in “softening” the hypotheses
and constructing a computational scheme for a broader class of structures—
one that includes some previously inadmissible designs. Thus, the choice of a
model and its evolution constitute important aspects of the design process.

Let us summarize what has been said above. Generally, it is useful in any
optimal design process to permit the possibility of making corrections in the
computational schemes (that is in the mathematical model) thus sharpening
or changing some of the initially assigned conditions.

1.2 Formulation of Problems in
Optimal Structural Design

The optimal design problems considered here consist in determining the
shapes, internal properties, and working conditions of a structure that obey
assigned constraints, and produce an extremum (either a maximum, or a
minimum) for a chosen quantity characterizing the design. In a rigorous
postulation of a problem of optimal structural design one must include the
statement of basic constitutive relations (the choice of a mathematical model)
and define the functional to be optimized, asign all the necessary constraints
to the state functions, and select the unknown control (design) variables.
From a purely mathematical point of view, such problems may be classified
by identifying the types of systems of differential equations and boundary
conditions, the types of optimized functionals and initially given constraints,
or, alternatively, by the dimension of the problem, the manner in which the
unknown design variables enter into the fundamental relations (e.g., should
we control the coefficients or the boundary of the region?), the completeness
of information concerning the given initial data (i.e., are we given a problem
with full information or one with incomplete information?), the nature of the
extremum (e.g., are we given a single extremum or multiple extrema?) and the
manner in which the extremum is defined (e.g., are we given a single criterion
or multiple criteria?), and perhaps by some other properties of the system.

In this section we shall examine a classical formulation of optimal design
problems. An exposition of some possible generalizations will be given in
sections 1.5 to 1.8. As we have previously remarked, an essential feature in the
formulation of such problems is the choice of a mechanical model. To begin
with, we choose the state variables u and system of equations

L(x,u,h,q)=0 (1.1)

relating these variables to the design parameters and also to the external loads.
Here the state variable u = {uy(x), ..., u,(x)} is a vector function that deter-
mines the state of the structure. The independent variable x = 12156000 %)
assumes all possible values in the region Q. The symbol L in the eq. (1.1)
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denotes a differential operator acting on functions of the spatial coordinates
x; only.

Equation (1.1) can be regarded as a system of generally nonlinear differential
equations. In this monograph we will be concerned with theories that assume
the validity of both geometric and physical hypotheses of linearity. In accor-
dance with such assumptions, the behavior of structures is described by
operators that are linear with respect to the state variables.

The operator L in eq. (1.1) depends on the design vector function h, where
h = {h,(x), ..., h,(x)}, and on the vector function of the external loads q. The
natural numbers m, n, and [ are given. Here it is assumed that the boundary
conditions determining the type of support and the loads applied to the
structure are all specified in the definition of L.

Given the loads and the structural parameters, the system of differential
equations must be “closed” (i.e., is well-posed), and thus should uniquely
determine the state variables, which in turn characterize the stresses and
deformations of the structure. Determining the state variables from the given
design functions shall be referred to as the direct problem.

If the state equations reflect the laws of physics, the choice of the design
variables appearing in the functionals considered in the design process, in-
cluding the optimized functional (i.e., the quality, or cost functional) and the
system of constraints, are all governed by the designated purpose of the
structure, the working environment, and the technology available for its con-
struction.

The functions h;(x) determine the shape and also the physical and mechani-
cal properties of the construction materials. As our h;(x), we can choose the
distribution of thickness and the cross-sectional area of the body, functions
that determine the location of the median surface for curved beams or shells,
the distribution of the density of the reinforcing material inside the structure,
or perhaps the angles that define the orientation of the axes of anisotropy at
each point inside the region occupied by an elastic body.

In an optimal design problem, besides the state functions and the design
variables we also need to know the functionals that characterize the design.
These functionals depend on the vectors u, h, and q:

Ji=Ji(u,hq),....J, = J,(uh,q).

Two types of such functionals are considered in optimal design problems:
functionals of the first type are called integral functionals:

ji:in(x,u,h,q)dQ, j=1,,..,71, (1.2)
Q

and of the second type, local functionals, for example,

J; = max fi(x, u(x), h(x), q(x)), (1.3)

withj=r +1,...,r  +1,.
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Here f; denotes given differential forms while r, and r,, are assigned natural
numbers with r; + r, = r.

Integral functionals or combinations of integrals of the type given in (1.2)
may represent characteristic properties of the structure, such as the weight,
the energy of the elastic deformation (compliance), natural frequencies of
vibration, or a critical load that would cause the structure to lose its stability
(cf.[1.11],[1.27],[1.39], and [ 1.40]). A local property could be the magnitude
of the maximal deflection or the stress intensity (cf. [7], [8], and [28]).

If other demands are made concerning the properties of the structure, then
appropriate constraints must be applied to the design and state variables. The
given constraints may form a system of inequalities, which may be displayed
in vector form:

v(x,uh,q,J,,....J)<0. (1.4)

The components y; of the vector {y} = {V1, ..., Y} are regarded as a priori
known functions of their arguments. Various notations used for the con-
straints (1.4) are discussed in section 2.2. In specific cases inequalities (1.4)
represent different types of bounds on the stresses, deformation, or displace-
ments, the integrands in rigidity or compliance functionals, and also the
natural frequencies of vibration and values of critical parameters that deter-
mine the loss of stability. One of these functionals, or perhaps a function of
several functionals, F(J,, ..., J,), is then chosen as the functional that is to be
optimized.

The optimization problem now consists in finding a specific (vector) function
that assigns a minimum (or a maximum) to the functional

J=F(J,,...,J) (1.5)

and also satisfies (1.1) to (1.4).

Note that, generally speaking, there may be arbitrarily many functionals
and assigned constraints, as long as they are not contradictory. However, there
can be only a single optimized functional (or quality criterion) for the structure
in each specific problem of the form of (1.1) to (1.5). Thus, in the bending of a
beam with variable thickness it is possible to formulate a problem of weight
minimization with a constraint on the maximal deflection, or the problem of
minimizing the maximal deflection for a given total weight. However, simul-
taneous optimization of both these functionals does not make sense within
the context of the classical concepts of optimality.

A correct formulation of optimization problems with a vector of assigned
quality criteria becomes possible if one makes use of the concept of optimality
in the sense of Pareto, or in some other sense appropriate to a multiple criteria
optimization. A large number of publications (e.g., [46], [1.25], [1.37], and
[1.38]) contain an exposition of the basic ideas of multi-criterion optimization
theory. Nevertheless, approaches to structural design based on non-classical
concepts of extrema are presently only in the initial stages of development.
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It has been made clear in several recent research articles on optimal design
theory that in many instances the formulation of optimization problems in
the manner of (1.1) to (1.5) has some serious limitations, since the optimal
solution h* or u* may not exist for the stated design limitations, even though
there exists a minimal value J* for the cost functional. Moreover, we may not
be particularly interested in finding h* or u*. It may suffice for our purposes
to uncover the general trends while searching for an optimal solution and to
find the sensitivity of functionals that are describing important characteristics
of a structure with respect to changes in the values of the parameters. There-
fore, it is of interest to broaden the formulation of the design problems, and
to introduce mathematical rigor so as to derive the entire process of obtaining
a solution by means of techniques of modern sensitivity analysis.

This generalized setting would include a construction of a minimizing
sequence, where for each fixed superscript “i” the elements of that sequence
satisfy (1.1) to (1.4) and the condition

lim (J¥) = J*, (1.6)
1= 00
where J' = J(u', h', q).

In the case when a classical solution exists for the problem represented by

(1.1) to (1.4), the limits: h' — h*, and u’ - u* (as i — o0) also exist.

1.3 Basic Functionals and Optimization Criteria

The choice of functionals in design optimization is the most important part
of formulating optimization problems. Many factors enter into this choice, for
example, the main purpose of the structure, working conditions, technology
available for its construction, cost limitations, properties of the model used to
describe the mechanical behaviour of the structure, and the a priori known
properties of the optimal design problem.

In what follows we consider typical functionals that are most frequently
considered in structural optimization:

1.3.1 One of the most important properties of a structure is its total weight,
and consequently this functional is considered in most design optimization
projects as either the quality criterion or as one of the assigned constraints.
The weight of the structure determines both the quantity of materials used in
the construction and some of its functional properties. For example, an
increase in the weight of an aircraft results not only in the increase of the
quantity of materials necessary for the construction, but will also produce
higher fuel consumption and will no doubt worsen other important flight
characteristics.

Weight is an integral property of the design. For homogeneous continua,
weight is proportional to the volume occupied by the body:



