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PREFACE

A variety of techniques which trace their origins back to many different
disciplines are loosely grouped together under the heading ‘‘data analysis.”
What they share is the ability to work well in the task of finding useful structure
in complicated collections of recorded information. They are designed to help
researchers separate important features from randomness and to draw attention
to specific aspects of potential interest that might otherwise be lost in a morass
of supportive detail. Although some of these methods were originally created in
order to solve specific problems, techniques of very general applicability have
resulted. It is certainly to the benefit of scientists and statisticians to be aware of
and to share theories and methods of data analysis.

Despite its usefulness, the field of data analysis is only now being accorded the
acceptance and recognition it deserves as a serious branch of the science of
statistics. This may be due to the necessarily fragmented history of a subject
whose original contributions came in part from scientists in scattered fields.
Another possible explanation for the only recent emergence of this field might
be that some techniques are informal and, although they work well in practice,
their precise mathematical properties are not yet known. Thus two important
aspects in the study of data analysis are the creation of new methods and the
derivation of the properties of existing methods.

The recent increase in awareness and acceptance of the field of data analysis is
due in a large part to the efforts of John W. Tukey. Professor Tukey has prac-
ticed data analysis for many years and is responsible for the creation of a variety
of new and useful methods. His 1977 book ““Exploratory Data Analysis’’
represents a large collection of both the philosophy and the methods of analyz-
ing data, and could be viewed as formally marking the beginning of the move-
ment. His 1977 book with F. Mosteller, ‘‘Data Analysis and Regression,”’ ex-
tends many of these ideas and provides a link with the more confirmatory side of
data analysis. In addition to these books, Professor Tukey has expended a good
deal of energy in helping the field by lecturing at scientific meetings, teaching
short courses, and directing research in related areas.

How do the methods of data analysis differ from the more classical statistical
techniques? A very significant difference is that traditional methods often re-
quire that a specific and often restrictive set of assumptions hold. Should the
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assumptions fail, the conclusions are not guaranteed to be valid, and serious
errors can result without warning. In contrast, exploratory and graphic data
analytic methods are designed to help the researcher detect many different types
of structures. Thus many good data analytic methods are robust and still work
well under a variety of underlying models, especially in the presence of outliers
and errors in the data. But perhaps the largest difference between classical
statistics and modern data analysis is in the philosophy behind the methods.
Many classical methods are designed with one model and one question in mind,
and the methods are optimized accordingly. Good data analytic methods are
designed with the unexpected in mind, so that potentially crucial facets of the
data will not be overlooked.

The flow of material in this volume roughly proceeds from general and ex-
ploratory to specific and confirmatory. We begin with an introduction to the
styles of data analysis, leading into several papers featuring graphical methods.
These are followed by a series of contributions relating to the recognition of
mathematical form and physical structure. The final papers are closely con-
cerned with the development of formal theories with application to robustness in
regression and the linear model.

These papers were presented at the workshop on Modern Data Analysis in
June 1980 in Raleigh, North Carolina, organized by the Mathematics Division of
the U.S. Army Research Office.



ABSTRACTS

INTRODUCTION TO STYLES OF DATA ANALYSIS TECHNIQUES

John W. Tukey

We are not used to thinking about data analysis techniques in terms of style. We
are not familiar with a good supply of names or acronyms for either the broad
purposes of the techniques or the other important ‘‘coordinates’’ in whose terms
such techniques can be usefully described. As a result both writer and reader
have an unusually difficult task. The development sequence begins with a sketch
of three pairs of coordinates. The first pair, ‘‘stochastic background”’ and
“‘stringency,’” seem to deserve treatment together, many instances falling under
one of eight rubrics. Another pair ‘‘character’’ and “flexibility’’ also go
together with six combinations worth emphasis. The combination (interactive)
of these two pairs of coordinates is then described. Next we notice that ‘‘data
structure”’ is wisely interpreted as covering more than the externals of the data,
going on to a brief historical setting for modern robust / resistant techniques.

SOME MULTIPLE Q-Q PLOTTING PROCEDURES

Nicholas P. Jewell

This paper is concerned with some extensions to the idea of a quantile-quantile
(Q-Q) plot that is commonly used by statisticians for a variety of purposes. Both
single and multiple Q-Q plots are considered. Particular attention is paid to
problems involving extreme-value data and to the study of the behavior of
sample averages.
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A READER’'S GUIDE TO SMOOTHING SCATTERPLOTS AND GRAPHICAL
METHODS FOR REGRESSION

William S. Cleveland

Comments about smoothing scatterplots and graphical methods for regression
are made and pointers to literature relevant to these comments are given.

SOME COMPARISONS OF BIPLOT DISPLAY AND PENCIL-AND-PAPER
EXPLORATORY DATA ANALYSIS METHODS

Christopher Cox and K. Ruben Gabriel

This paper uses a number of data sets from Tukey’s ‘ ‘Exploratory Data Analysis’’
to compare their inspection and analysis by biplot display with the exploratory
data analysis given by Tukey. The use of biplots for display of two and three way
tables is described and the methods of diagnosing models are explained. The
illustrations suggest that biplot diagnoses usually result in similar models (ad-
ditive, multiplicative, degree-of-freedom-for-non-additivity, etc.) to those
brought out by pencil-and-paper exploratory data analysis techniques—but
biplot diagnostics seem much faster and more immediate.

THE USE OF SMELTING IN GUIDING RE-EXPRESSION

John W. Tukey

Most frameworks, whether or not statistical models, used in data analysis in-
volve some type of functional behavior. Thus it is important to have effective
techniques of asking the data what sort of functional behavior we should have in
our framework for handling a specific body (or kind) of data. Some sort of
smoothing process is essential here; one that is robust/resistant and provides
specially smooth input to a recognizer of functional form.



ABSTRACTS xiii

Smoothing is usually thought of as value change, but it can also be done by
eliminating less typical points and keeping more typical ones. Smelting is a
specific class of techniques for smoothing by excision, in which the qualitative
nature of the series is used to tell us which (x, y) pairs to keep and which to set
aside.

Combined with a good selection of diagnostic plots, smelting offers the best
route we have today toward functional form recognition. Done reasonably, we
can go far toward the use of functional forms invertible in closed form,
avoiding, for example, dangerous polynomials.

GEOMETRIC DATA ANALYSIS: AN INTERACTIVE GRAPHICS
PROGRAM FOR SHAPE COMPARISON

Andrew F. Siegel

Two shapes, each consisting of » homologous points, can be rotated, scaled, and
translated to obtain a close fit to each other by several methods. An interactive
graphical computer program is presented here that implements two methods:
least squares and repeated medians, a robust method. Examples are given and
the use of the system is discussed.

PROJECTION PURSUIT METHODS FOR DATA ANALYSIS

Jerome H. Friedman and Werner Stuetzle

Projection pursuit methods iteratively construct a model for structure in
multivariate data, based on suitably chosen lower dimensional projections. At
each step of the iteration, the model is updated to agree with the data in the cor-
responding projection. Projections can be chosen either by numerical optimiza-
tion (automatic projection pursuit) or interactively by a user at a computer
graphics terminal (manual projection pursuit). The projection pursuit paradigm
has been applied to clustering, regression, classification, and density estimation.
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INFLUENCE FUNCTIONS AND REGRESSION DIAGNOSTICS

Roy E. Welsch

Influential-data diagnostics are becoming an accepted part of data analysis. In
this paper we show how these diagnostic techniques are connected with the ideas
of qualitative robustness described by Hampel and the concept of bounded-
influence regression as developed by Krasker and Welsch. Asymptotic influence
functions are discussed, and the identification of influential subsets of data
points is considered.

THE USE AND INTERPRETATION OF ROBUST ANALYSIS OF VARIANCE

Joseph W. McKean and Ronald M. Schrader

Robust analysis of variance procedures are discussed for the general non-full-
rank linear model. These procedures are described in terms of their mathemat-
ical structure, demonstrating that the analysis has the same uses and interpreta-
tion as classical analysis of variance. This structure also leads to efficient com-
putational algorithms. Necessary standardizing constants for the test statistics
are motivated by consideration of likelihood ratio tests. An example of an ex-
perimental design illustrates the similarity between the robust and classical
analyses, emphasizing the advantages of the robust method. Some Monte Carlo
results attest to the validity of the robust methods for the example.
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INTRODUCTION TO STYLES OF
DATA ANALYSIS TECHNIQUES

John W. Tukey

Research-Communications Principles Division
Bell Laboratories
Murray Hill, New Jersey
and
Department of Statistics
Princeton University*
Princeton, New Jersey

We are not used to thinking about data analysis techniques in terms of style.
We are not familiar with a good supply of names or acronyms for either the broad
purposes of the techniques or the other important “‘coordinates” in whose terms
such techniques can be usefully described. As a result both writer and reader have
an unusually difficult task.

One way to, I hope, ease that task is to offer readers two different ways to
read what follows: either Sections I to VI followed by Sections VII and VIII, thus
developing concepts before their exemplification, or first Sections VII and VIII, fol-
lowed by Sections I to VI, thus illustrating the concepts before defining them.

The development sequence begins [Section I] with a sketch of three pairs of
coordinates. The first pair, “stochastic background” and “stringency”, seem to
deserve treatment together [Section II], many instances falling under one of 8
rubrics. Another pair “character” and “flexibility” also go together [Section III]
with 6 combinations worth emphasis. Section IV then describes the combination
(interactive) of these two pairs of coordinates. Next we notice [Section V] that
“data structure” is wisely interpreted as covering more than the externals of the
data, going on [Section VI] to a brief historical setting for modern robust/resistant
techniques.

The illustration sequence begins [Section VII] with a brief account of the more
important classes of data-handling components -- ADEs, OCONSs, DDAPs, OUTs,
CDAPs and SDAPs. Section VIII discusses how more or less familiar techniques,
when used to analyze 10 observations on each of 7 quantities, fit into the classifica-
tion set up in Section VI and, in part, into the coordinates described earlier.

*Prepared in part in connection with research at Princeton University sponsored by the
Army Research Office (Durham).

MODERN DATA ANALYSIS Copyright ©1982 by Academic Press, Inc.
1 All rights of reproduction in any form reserved.
ISBN 0-12-438180-4



2 JOHN W. TUKEY

I. COORDINATES FOR USES OF DATs

If we are to think about uses of data analysis techniques (DATSs), we need to
have several kinds of coordinates in mind. These are conveniently grouped as fol-
lows:

® stochastic background
styles | o indication, conclusion, etc.

® formal arrangement

data structure {. type of phenomena

) ® output wanted
specifiers | o algorithms used

Any or all may be important. Of the six, the 3rd, 5th and 6th are, relatively at
least, well understood. What we might need to discuss then, will be the 1st, 2nd,
and, in less detail, the 4th.

Some readers may want to begin with Section VII, reading to the end before
returning to this point. Others will prefer to read the sections in order of their
numbers.

II. STOCHASTIC BACKGROUND AND STRINGENCY COMBINED:
THE FIRST STYLE COORDINATE

It would have been possible for techniques to be common with any combina-
tion of stochastic background and stringency.

Here “stringency” is a deliberately vague term (cp. Mosteller and Tukey 1977,
pp. 17ff) covering “efficiency”, “power”, “minimum variance” and the like. In
our current world, however, only a few combinations are at all common, namely
the eight in exhibit 1.

Two comments need to be made about this coordinate:

® where a DAT (data analysis technique) belongs may depend on the cir-
cumstances where it was invented -- and it may depend on how it is
thought about. Thus moment-matching requires little if any formal back-
ground for its invention (and development), but is sometimes of high nar-
row stringency against an overutopian background.

® one reason for the absence of “nonparametric, high” is that we have not
found any good way to seek out such a behavior.



STYLES OF DATA ANALYSIS TECHNIQUES

exhibit 1

The 8 common combinations of stochastic
background and stringency

Stochastic Narrow Broad Examples**
background stringency* stringency* (say for n=8)
No formal (inapplicable)  (inapplicable) midhinge
Overutopian Not much Dubious 5% and mean of random
subsample of 3
Overutopian  High or nearly so  Dubious mean and s2
‘“‘Nonparametric” Unknown Unknown  median and sign test for
a random subsample
‘“‘Nonparametric” Some Dubious  midhinge and hingespread
“Nonparametric’ Some Some —
Robust/resistant Medium Medium midmean and midspread
Robust/resistant High High biweight

*«“Stringency” here means ‘‘degree of success in wringing out all the information that is
there”. It is narrow if assessed for a narrowly specified situation, as for instance, for sam-
ples from a Gaussian distribution. It is broad if assessed against each and any of a broad

set of situations.

**Most unfamiliar terms are defined in either Tukey 1977, Mosteller and Tukey 1977, or
both.
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Illustrations
A few brief illustrations may help us. Let us consider:

® Using Student’s ¢ is a matter of critical data analysis. This is usually
thought of as deriving from a tight Gaussian specification via sufficient
statistics (which would make its stochastic background “overutopian”, its
narrow stringency “high”, and its broad stringency ‘‘dubious’), but, since
the paper of Pitman (1937), using Student’s ¢ can also be thought of -- in
the two-sample case, at least -- as almost nonparametric in stochastic
background but still, of course, with broad stringency, dubious.

® Looking hard at-'a sample median (unaccompanied); this has to be a
matter of exploratory data analysis, probably with no formal stochastic
background for small batches, however, medians also come from a
robust/resistant stochastic background; the broad stringency would vary
with batch size (#=3 or 4, evermore relatively high stringency; #=5 or
6, today relatively high stringency. n = 7 up, moderate stringency. )

® Looking hard at a modern (say 6-biweight) estimate of center unaccom-
panied by assessment of width; this still has also to be a matter of explora-
tory data analysis, but the stochastic background is almost surely
robust/resistant, and the stringency is high (at least for n = 7 or 8).

IIl. CHARACTER AND FLEXIBILITY COMBINED:
THE SECOND STYLE COORDINATE

Here we find character and flexibility even more closely related to one another
(than stochastic background and stringency were). The six alternatives of exhibit 2
cover all that is today common.

exhibit 2

6 common combinations of character and flexibility

Tag Character Flexibility
RDDA rigidly descriptive (with negligible
no exploration)
EDA truly exploratory large
OCDA-E  “Overlapping-critical” used yes
for exploratory purposes
OCDA-C  ““Overlapping-critical’” used yes
for confirmatory purposes
“simple confirmatory’’
SCDA “separate critical’’ not here

CCDA “careful confirmatory” eliminated



