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PREFACE

The present volume is the successor to and, in effect, a
revision of the Ingersoll and Zobel text of some years ago. To
quote from the earlier preface: ‘. . . the theory of heat con-
‘duction is of importance, not only intrinsically but also because
its broad bearing and the generality of its methods of analysis
make it one of the best introductions to more advanced mathe-
matical physics.

“The aim of the authors has been twofold. They have
attempted, in the first place, to develop the subject with special
reference to the needs of the student who has neither time nor
mathematical preparation to pursue the study at great length.
To this end, fewer types of problems are handled than in the
larger treatises, and less stress has been placed on purely mathe-
matical derivations such as uniqueness, existence, and con-
vergence theorems.

“The second aim has been to point out . . . the many
applications of which the results are susceptible . . . . It is
hoped that in this respect the subject matter may be of interest
to the engineer, for the authors have attempted to select appli-
cations with special reference to their technical importance, and
in furtherance of this idea have sought and received suggestions
from engineers in many lines of work. While many of these
applications have doubtless only a small practical bearing and
serve chiefly to illustrate the theory, . . . the results in some
cases . . . may be found worthy of note. The same may be
said of the geological problems.

‘“While a number of solutions are here presented for the first
time . . . no originality can be claimed for the underlying
mathematical theory which dates back, of course, to the time of
Fourier.”

Since the above was written there has been a steady increase
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in interest in the theory of heat conduction, largely along prac-
tical lines. The geologist and geographer are interested in g
new tool which will help them in explaining many thermal
phenomene, and in establishing certain time scales. The engi-
neer, whose use of the theory was formerly limited almost
entirely to the steady state, has developed many useful tables
and curves for the solution of more general cases and is interested
.in finding still other methods of attack. The physicist and
mathematician have done their part in treating problems which
have hitherto resisted solution.

The present volume carries out and extends the aims of
the earlier one. Most of the old material has been retained,
although revised, and almost an equal amount of new has been
added. The geologist, geographer, and engineer will find many
new applications discussed, while the mathematician, physicist,
and chemist will welcome the addition of a little Bessel
function and conjugate function theory, as well as the several
extended tables in the appendixes. Some of these are new
and have had to be specially evaluated. The number of refer=
ences has also been greatly enlarged and three-quarters of them
are of more recent date than the older volume. A special
feature is the extended treatment, particularly as regards
applications, of the theory of permanent sources. This is
carried out for all three dimensions, but most of the applications
center about the two-dimensional case, the most interesting of
these being the theory of ground-pipe heat sources for the heat
pump. Other features of the revision are a modernized nomen-
clature, many new problems and illustrations, and the segre-
gation of descriptions of methods of measuring heat-conduction
constants in a special chapter. i :

' A feature of particular importance to those whose interests
are largely on the practical side is the discussion in Chapter 11
of auxiliary graphical and other approximation methods by
which many practical heat conduction problems may be solved
with only the simplest mathematics. It is believed that many
will appreciate this and in particular the discussion of pro-
cedures by which it is possible to handle simply, and with
sufficient accuracy for practical purposes, many problems whose
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solution would be almost impossible by classical methods. As

regards the book as a whole, the only mathematical prerequisite
necessary for reading it is a reasonable knowledge of calculus.

Despite occasional appearances to the contrary, the mathe-

matical theory is not difficult and falls into a pattern which is

readily mastered, The authors have tried, in general, to reduce

mathematical difficulties to a minimum, and in some cases have

deliberately chosen the simpler of two alternate methods of~
solving a problem, even at a small sacrifice of aceuracy.

The authors acknewledge again their indébtedness to the
several standard treatises referred to in the preface to the earlier
edition, and in particular to Carslaw’s ‘“Mathematical Theory
of the Conduction of Heat in Solids”; also Carslaw and Jaeger’s
““Conduction of Heat in Solids.” It is hard to single out for
special credit any of the hundred-odd other books and papers
to which they are indebted and which are listed at the end of
this volume, but perhaps particular reference should be made
to McAdams’ ““Heat Transmission’ and to papers by Emmons,
Newman, and Olson and Schultz.

The authors are glad to acknowledge assistance from many
friends. These include: O. A. Hougen, D. W. Nelson, F. E.
Volk, and M. O. Withey of the College of Engineering, Uni-
versity .of Wisconsin; J. D. MacLean of the Forest Products
Laboratory; J, H. Van Vleck of Harvard University, W. J. Mead
of Massachusetts Institute of Technology, and A. C. Lane of
- Cambridge; C. E. Van Orstrand, formerly of the U.S. Geo-
logical Survey; H. W. Norton of Oak Ridge, Tennessee; C. C.
Furnas of the Curtiss-Wright Corp., B. Kelley of the Bell
Aircraft Corp., and G. H. Zenner and L. D. Potts of the Linde
Air Products Laboratory, in Buffalo; A. C. Crandall of the
Indianapolis Light and Power Co.; M. 8. Oldacre of the Utilities
Research Commission in Chicago; and a large number of others
who have given help and suggestions. The authors are par-
ticularly indebted to F. T. Adler of the Department of Physics
of the University of Wisconsin and to H. W. March of the
Department of Mathematics for much assistance; also to K. J.
Arnold of the same department and to Mrs. M. H. Glissendorf
and Miss R. C. Bernstein of the university computing service
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for the recalculation and correction of many of the tables; to
Miss Frances L. Christison and Mrs. Doris A. Bennett, librar-
ians; to H. J. Plass and other graduate students for helping in
the elimination of errors; and to Mrs. L. R. Ingersoll and Mrs.
A. C. Ingerscll for assistance in many ways.

TaE AvuTHORS
January, 1948 °

PREFACE TO THE REVISED EDITION

In the present volume, which is really the third edition of
this book, the principal changes, relative to the last or MeGraw-
Hill edition, are the addition of Chapters 13 and 14.

The first of these has to do with the heat pump. No excuse
is needed for adding to the theory of this modern system of year-
round air-conditioning, which is today receiving so much atten-
tion. The use of the ground as a source of heat for the heat
pump involves a number of phases of heat conduction theory
and is one of the best possible applications of such theory. The
simple introductory treatment given in the last edition has here
been greatly expanded.

In the last chapter two of the newer applications of the heat
flow equation are discussed, viz., the subjects of drying and of
soil consolidation-—both fields of increasing importance.

The new material adds almost 20 per cent to the size of the
book, 25 per cent to the number of figures, and it is hoped an
even larger proportional value to the volume as a whole.

We are glad to acknowledge assistance from many friends in
preparing this edition and we are especially indebted to Professor
W. R. Marshall, Jr., of the Department of Chemieal Engineering
and Professor D. W. Nelson of the Department of Mechanical
Engineering of the University of Wisconsin, and to Professor
Jack E. McKee of the Department of Civil Engineering of Cali-
fornia Institute of Technology.

THE AUTHORS
December, 1953
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CHAPTER 1
INTRODUCTION

1.1. Symbols. The following table lists the principal sym-
bols and abbreviations used in this book. They have been
chosen in agreement, so far as practicable, with the recommenda-
tions of the American Standards Association and with general
scientific practice. :

’ .
ks
B(z)
Ba(z)
8, v

Btu

cgs

C(z)

exp &
fph

I(z)
Ja(z)

In z

TasLr 1.1,—~-NOMENCLATURE
Area, cm? or ft2
Thermal diffusivity, cgs or fph (Secs. 1.3, 1.5, Appendix A).
2(e= — e%= 4 ¢ % — « - - ) (Sec. 9.17, Appendlx H).

A\ - ie"' + % e = 4 - ) (Sec. 9.18, Appendix H).

Variables of integration; also constants.

Variable of integration; also a constant; also wave length.

British thermal unit, 1 Ib water 1°F (Sec. 1.5).

Specific heat (constant pressure), cal/(gm)(°C), or Btu/{1b)(°F); also
& constant. 5

Calorie, 1 gm water 1°C (See. 1.5).

Centimeter-gram-second system; used here only with centigrade tem-
perature scale and calorie as unit of heat.

e~=n? e—ont e85 #
2 (zl Em g ) (Sec. 9.38, Appendix J).

Foot-pound—hour system, used here only with Fahrenheit temperature
scale and Btu as heat unit.

Coefficient of heat transfer between a surface and its surroundings,
cal/(gec)(cm?)(°C) or Btu/(hr)({t?)(°F); sometimes called “ernis-
sivity”’ or “exterior conductivity” (Sec. 2.5, Appendix A).

1
2Vt
/;- Be—# d8 (Sec. 9.8, Appendix F).

Bessel function (Sec. 9.36).
Thermal conductivity, egs or fph (Secs. 1.3, 1.5, Appendix A).

. log, z.

1
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Tasie 1.1.~NomeNcLATURE—(Continued)
B(z) Probability integral, —= [* ¢ d8 (Appendix D).
' A/x Jo
Q Quantity of heat, cal or Btu (sometimes taken per unit length or unit

ares; see Q’).
q Rate of heat flow, cal/sec or Btu/hr (sometimes also used for rate of
~ heat production).
Q Rate of heat production or withdrawal in permanent sources or sinks,

cal/sec or Btu/hr for three-dimensional case; cal/sec per cm length
or Btu/hr per ft length for two-dimensional case; cal/(sec)(cm?) or
Btu/(hr)(ft?) for one-dimensionsl case (Secs. 8.2, 9.9).

p - ‘Density, gm/cm?, or Ib/ft2.

Thermal resigtance fi— (Sec. 3.8).
S Strength of instantaneous source, -c%(Secu. 8.2, 9.9).

4
S Strength of permanent source, % (Secs. 8.2, 9.9).

S(z) ; (e""- - %le-"" - %g-"“- — e ) (8ec. 8.16, Appendix G).
3 Time, seconds or hours.

ik Temperature, °C or °F.
w Rate of flow of heat per unit aresa, %; 6al/ (sec)(cm?) or Btu/(hr)(ft?)
(Sec. 1.3) :

1.2. Historical. The mathematical theory of heat conduc-
tion in solids, the subject of principal concern in this book, is
due principally to Jean Baptiste Joseph Fourier (1768-1830)
and was set forth by him in his ‘“Théorie analytique de la
chaleur.”#t While Lambert, Biot, and others had developed
some more or less correct ideas on the subject, it was Fourier
who first brought order out of the confusion in which the experi-
mental physicists had left the subject. While Fourier treated
a large number of cases, his work was extended and applied
to more complicated problems by his contemporaries Laplace
and Poisson, and later by a number of others, including Lamé,
Bir W. Thomson4¢147 (Lord Kelvin), and ‘Riemann.'® To the

* The use of 8 for temperature, as in the former edition of this book, has been
discontinued here, partly because many modern writers attach the significance of
time to it and partly because of the increasing adoption of T'. It is suggested that,

to avoid confusion, this be always pronounced “captee.”
t Superscript figures throughout the-text denote references in Appendix M,
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last mentioned writer all students of the subject should feel
indebted for the very readable form in which he has put much
of Fourier’s work. The most authoritative recent work on the
subject is that of Carslaw and Jaeger.”™ . Rene gl

1.3. Definitions. When different parts of a solid body are at
different temperatures, heat flows from the hotter to the colder
portions by a process of electronic and atomic energy transfer
known as “conduction.” The rate at which heat will be trans-
ferred has been found by experiment to depend on a number of
conditions that we shall now consider.

To help visualize these ideas imagine in a body two parallel
planes or laminae of area A and distance x apart, over each of
which the temperature is constant, being 7'y in one case and T's
in the other. Heat will then flow from the hotter of these iso-
thermal surfaces to the colder, and the quantity Q that will be
conducted in time ¢ will be given by '

- —"Try (a)
or q%%=k&%—@A | )

where k is a constant for any given material known as the

~ thermal conductivity® of the substance. It is then numerically

equal to the quantity of heat that flows in unit time through

_unit area of a plate of unit thickness having unit temperature

difference between its faces. e

The limiting value of (T3 — T1)/z or dT/dz is known as
the temperature gradient at any point. If due attention is paid
to sign, we see that if d7'/9z is taken in the direction of heat
flow it is intrinsically negative. Hence, if we wish to have a

- positive value for the rate at which heat is transferred across an

isothermal surface in a positive direction, we write

q = —kA o= (o)
aT
or : w = —kﬁ—i (d)

where w (= q/A) is called the ‘“flux’’ of heat across the surface
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at that point. If instead of an isothermal surface we consider
another, making an angle ¢ with it, we can see that both the
flux across the surface and the temperature gradient across the
normal to such surface will be diminished, the factor being cos ¢,
so that we may write in general for the flux across any surface

w= —-k% | (e)

where the derivative is taken along the outward drawn normal,
i.e., in the direction of decreasing temperature. This shows
that the direction of (maximum) heat flow is normal to the
isotherms. :

While the rate at which heat is transferred in a body, e.g.,
along a thermally insulated rod, is dependent only on the con-
ductivity and other factors noted, the rise in temperature that
this heat will produce will vary with the specific heat ¢ and the
density p of the body. We must then introduce another con-:
stant a whose significance will be considered later, determined
by the relation

.
g 65
‘The coustant a has been termed by Kelvin the thermal diffusivity
of the substance, and by Maxwell its thermometric conductivity.

Equations (a) and (e) express what is sometimes referred to
as the fundamental hypothesis of heat conduction. Its justi-
fication or proof rests on the agreement of calculations made on
this hypothesis, with the results of experiment, not only for the
very simple but for the more complicated cases as well.

1.4. Fields of Application. From (1.3¢) we may infer in
what field the results of our study will find application. We
may conclude first that our derivations will hold good for any
body in which heat transfer takes place according to this law,
if k is the same for all parts and all directions in the body.
This includes all homogeneous isotropic solids and also liquids
and gases in cases where convection and radiation are negligible.
The equation also shows that, since only differences of tempera-
ture are involved, the actual temperature of the system is
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immaterial. We shall have cause to remember this statement
frequently; for, while many cases are derived on the supposition
that the temperature at the boundary is zero, the results are
made applicable to cases in which this is any other constant
temperature by a simple shift of the temperature scale.

But the results of the study of heat conduction are not
limited in their application to heat alone, for parts of the theory
find application in certain gravitational problems, in static and
current electricity, and in elasticity, while the methods devel-
nped are of very general application in mathematical physics.
As an example of such relationship to other fields it may be
pointed out that, if T in (1.3a) is interpreted as electric potential
and k as electric conductivity, we have the law of the Alow of elec-
tricity and all our derivations may be interpreted accordingly.

Another field of application is in drying of porous solids,
e.g., wood. ¥t is found that for certain stages of drying the
moisture flow is fairly well represented* by the heat-conduction
equation. In this case Q represents the amount of water (or
other liquid) transferred by diffusion, T is the moisture content
in unit volume of the (dry) solid, % is the rate of moisture flow
per unit area for unit concentration gradient. The quantity
cp, which normally represents the amount of heat required to
raise the temperature of unit volume of the substance by one
degree, is here the amount of water required to raise the moisture -
content of unit volume by unit amount. This is obviously unity,
so k and « are the same in this case; k is here called the ¢ ‘diffusion
constant.” The passage of liquid through a porous solid, as in
drying, is a more complicated process than heat flow, and the
application of conduction theory has definite limitations, as
pointed out by Hougen, McCauley, and Marshall.’38 It may .
be added that in all probability the diffusion of gas in a metal is
subject to the same general theory as water diffusion in porous
materials. :

Lastly, we may mention the work of Bict'® on settlement and
consolidation of soils. This indicates that the conduction

* Bateman, Hobf and Stamm,® Ceaglske and Hougen,? Gilliland and Sher-

wood,® Lewis,®® McCready and McCabe,” Newman,'s! Sherwood,’#128 and
Tuitle, 1%
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‘equation may play an important part in the theory of these
phenomena. ' ) <

1.5. Units; Dimensions. Two consistent systems of con-
ductivity units are in common use, having as units of length,
mass, time, and temperature, respectively, the centimeter,
gram, second, and centigrade degree, on the one hand and the foot,
pound, hour, and Fahrenheit degree on the other. The former
unit will be referred to as cgs and the latter as fph as regards
system. This gives as the unit of heat in the first case the
(small) calorie, or heat required to raise the temperature of 1 gm
of water 1°C,.frequently specified 'at 15°C; and in the second
the Btu, or heat required to raise 1 Ib of water 1°F, sometimes
specified at 39.1°F* and sometimes at 60°F. The cgs thermal-
conductivity unit is the calorie per second, per square centimeter
of area, for a temperature gradient of 1°C per centimeter, which
shortens to cal/(sec)(cm)(°C), while the fph conduetivity unit
is the Btu/(hr) (ft)(°F). Similarly, the units of diffusivity come
out em?/sec and ft?/hr. The unit in frequent use in some
branches of engineering having areas in square feet but tempera-
ture gradients expressed in degrees per inch will not be used here
because of difficulties attendant on the use of two different units
of length.

In converting thermal constants from one system to another
and in solving many problems Table 1.2 will be found useful.

Conversion factors other than those listed above may be .
readily derived from a consideration of the dimensions of the
units. From (1.3a) 5

@ .
e s i<

Since—putting the matter as simply as possible—the unit of
heat is that necessary to raise unit mass of water one degree,
its dimensions are mass and temperature; thus, the dimensions
of Q/(T: — T.) are simply M. Hence, K the unit of conduc-
tivity is the unit of mass M divided by the units of length L
5 * The matter of whether heat units are specified for the temperature of maxi-

mum depsity of water or for a slightly higher temperature may result in dis-

crepancies of the order of half a percent, but this is of little practical importance
- since this is below the usual limit of error in thermal conductivity work.



