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_Prefece

I wrote this book for the course, Principles of Solid State
Physics, developed at Brigham Young University. The course
was specifically intended for non-physics majors. The prereqg-
uisites are two semesters of introductory physics that cover
mechanics and electric and magnetic fields. A course in mod-
ern physics is not a prerequisite. Thus, many topics of modern
physics, such as quantum mechanics, are included in this course
to the extent that they are needed to understand the aspects
of solid state physics covered.

The purpose of this course is to acquaint the student with’
the fundamental physics of solids. This empha.sm is on under-
standing the behavior of electrons in metals and semlcomluc-
tors. In the first 3 chapters, crystal structure, x-ray diffraction,
and lattice vibrations are discussed as a natural way to intro-
duce concepts such as translational symmetry, wave interfer-
ence, reciprocal lattice, and the first Brillouin zone. Also, two
chapters (5-6) on quantum theory are included to teach the ba-
sic ideas and principles of quantum mechanics needed. All of
these concepts are brought together to form an understandable
modern picture of electrons in metals (chapters 7-9), in semi-
conductors (chapters 10-12), and in superconductors’ (chapter ‘
13). Numerous examples, problems, and figures are used to il-
lustrate the material being presented There are 181 problems
and 188 figures in this book. '

The reader may note that some topics usua.lly found in
conventional solid state physics textbooks are missing from this
book, such as heat capacity, plagnetxsm, dielectrics, etc. This
is a one-semester course. I wanted to treat a few central topics
in great detail rather than describe superficially a great ma.ny
topics.

I wish to thank Professor Dean Barnett and Professor
William Evenson for critically reading portions of this book
and for the many valuable suggestions they have made.
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CHAPTER 1
CRYSTAL STRUCTURE

1-1 Introduction

Many solids around us are crystalline. Obvious examples
are diamonds and other precious stones which have an out-
ward crystalline appearance. Many metals are also crystalline.
However, they are usually composed of numerous small crystals
fused together so that their outward appearance is not crys-
talline. In this book, we will consider only crystalline solids.

A crystal is a solid in which all the atoms are arranged in
a periodic manner. As a simple example, consider the cubic ar-
rangement of atoms shown in Fig. 1-1. We show only a portion
of the crystal. We imagine that it extends out in all directions
to infinity. Real crystals, of course, have finite dimensions, but,

Fig. 1-1. Simple cubic arrangement of atoms.



‘2 : CHAPTER 1 CRYSTAL STRUCTURE

for now, we consider the crysté.l to be infinitely large with no
surfaces.

The atoms in the crystal shown in Fxg 1-1 are in equiv-

" alent positions. If we sit on one of the atoms, we cannot
tell where we are by looking at the neighboring atoms. All
atoms have exactly the same surroundings. (This, of course,
. is only strictly true in an ¢nfinite crystal.) If we move the en-
' tire crystal in some direction so that each atom is now at a
position where some other atom used to be, the crystal looks
the same as before. We cannot téll that it has been moved.
This is called translational symmetry. We may now state
the definition of a crystal more precisely. A crystal is a sohd
which has translational symmetry.

1-2 Lattices

In order to quantitatively describe a crystal, we introduce
a group of geometric points called the crystal lattice which
defines the positions of the atoms. As an example, consider the
two-dimensional square lattice shown in Fig. 1-2. This lattice
is a set of geometric points on a plane. If we were to place

»
[ ]
[ ]
]
|

8

L] ¢ - ] [ ] -@

_ : — O ee—

Fig. 1-2. The two-dimensional square lattice.



CHAPTER 1 ORYSTAL STRUCTURE 3

an ai:o_m at each point, then we would have a two-diniensiona.l
crystal. All lattice points in the figure are equivalent. This
lattice has translational symmetry in two dimensions..

1-3 Basis Vectors

A lattice vector is a vector which takes us from one
lattice point to any other lattice point. Obviously, all lattice
vectors R in the two-dimensional square lattice (Flg 1-2) have’
the form '

R = njai + nadj, (1-1)

where n, and nj are integers (including negative values and
zero), and a is the distance between adjacent lattice points in
the z or y directions, as shown in Fig. 1-2. 1 and J are unit
vectors in the z and y directions, respectively. If we deﬁne two
vectors (see Fig. 1-3),

aj = al, g

. . 1-2
az = aj, ( )
then we can write R as
R = nja; + noas. (1-3)
, YU
|
[ ] [ [ ] [ J [ J
° iy . °
az ‘
[ J L ] [ J
ai
. 2 . . 4 . 2 T
PO . . .

Fig. 1-3. Basis vectors for the square lattice.
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Thus, any lattice vector R can be written as a linear combi-
nation of a; and az (using integers, ny and nz). Conversely,
it is also true that any linear combination of a; and as (using
integers, n, and nj) is a lattice vector R. Such vectors, a; and
aq, are called basis vectors of the lattice.

The choice of basis vectors, a; and as, is not umque We
could just as well choose (see Fig. 1-4)

- . (1-4)

For example, consider the lattice vector R =adf + 2a.,1 This
can be written as R = a; +2a, oras R = —g/’ +2a2 as shown
in Fig. 1-5. .

There are an infinite number of wajs to choose basis vec-
tors for a given lattice. There is, hoWever, usually a conven-
tional choice of basis vectors. For'example, the conventional
basis vectors for the square latticé are those given in Eq. (1-2).
Basis vectors can be found for any lattice of equsvalent points.

‘ y
® ®  J [ J L J
® [ ] ® [ ]
al
2
[ J [ ] 7 [ ]
a

Flg 1-4. An alternate choice of basis vectors for the square
lattice.
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| y
® ® L J L ]
R
° ¢ ® °
2a2
L ] ® a1 [ ]

Fig. 1-5. Lattice vector R expressed as a linear combination of
the basis vectors, a; and a2, and also as a linear combination
of the basis vectors, aj 'and a}.

7



6 CHAPTER 1 OCRYSTAL STRUCTURE

1-4 Simple Cubic Lattice

The extension to three dimensions is straightforward. The
lattice which underlies the crystal structure in Fig. 1-1 has basis
vectors given by '

a) = a.i, ' :
a; = aj, (1'5)
ag = ak, ’

and the lattice vector is given by
R = 'nla; + nqaq + ngags. (1—6)

_ This lattice is called simple cubic (sc).
1-5 Unit Cells

A crystal can always be divided into “building blocks”
called unit cells. Each unit cell has the same shape, the same
volume, and the same contents. For the sc lattice, we may
choose the unit cell to be a cube of side a (see Fig. 1-6). The

L~

R S P
- a f—

. Fig. 1-6. Unit cells of the sc lattice
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choice of position of the lattice point within the unit cell is
arbitrary. We may arrange the cubes so that each cube con-
tains one lattice point at its center:(see Fig. 1-7a). Alternately,
we may arrange the cubes so that the lattice points are at the
corners of the cube (see Fig. 1-7b). The second choice is the
conventional unit cell.

Each of these unit cells contains one lattlce point. This is
obviously true for the unit cell in Fig. 1-7a which contains one
lattice point in the center. But the conventional unit cell in
Fig. 1:7b appears to contain eight lattice points, one at each
corner. Actually, each of those lattice points is shared by eight
neighboring unit cells that adjoin at the corner so that each
unit cell contains “1 lattice point” at the corner. Eight such
lattice points give us a total of one lattice pomt in the unit
cell.

Just as the choice of basis vectors for a lattice is not
unique, the choice of unit cells is also not unique. For example,
we could just as well choose the unit cell shown in Fig. 1-8. We
only require that the unit cells be identical to each other and
fill all space. There are an infinite number of ways to choose
the unit cell. However, the conventional unit cell for the sc

@ (b)

<] =

O i
L=
—_— -

." Fig. . 1-7. . The unit cell for the sc lattice (a) with a lattice
point at the center and (b) with a lattice point at each corner
(conventional unit cell).’
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Flg 1-8. An alternate choice of unit cell for the sc lattice.

~—

lattice is the cube shown in Fig. 1-7b. The distance a between
adjacent atoms in the z, y, or z direction is called the lattice
parameter.

1-8 Crystal Directions and Planes

Directions in crystals are usually represented in shorthand
by three integers inside a set of square brackets. The direction
R = njai + nzaj + n3zak in a cubic crystal, for example, is
written as [n1,ng,ng). ‘The integers are usually chosen to be
as small as possible. Three common directions in cubic crystals
with which we will deal are (see Fig. 1-9)

Re= ol or (100],
R=gai+aj ‘or [110], (1-7)
‘R=ai+aj+ak or [111],

Consider a hypothetical crystal which has one atom at
each lattice point of an sc lattice with @ = 5.00 A. (No naturally
occurring element forms an sc lattice.) Starting from an atom
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NS ) N
AT
- [100] [110]

Fig. 1-9. Three common directions in cubic crystals.

* at the origin, we see that along the [100] direction, there are
atoms at ai, 2ai, 3ai, etc. The distance between adjaceni atoms
along the [100] direction is a = 5.00,A, which is the length of
the vector a; = af.

If we go along the [110] direction from the atom at the
origin, we .find atoms at ai + aj, 2al + 2aj, 3al + 3aj, etc.,
and the distance between adjacent atoms is the length of the
vector ai + aj, which is v/2a = 7.07 A. Similarly, along the
[111] direction, atoms are at ai + af + ak, 2af + 20§ + 20k,
" 3af + 3aj + 3ak, etc., and the distance between adjacent atoms
is the length of the vector ai+ aj + ak, which is v/3a = 8.66 A.

We would find, in general, that’along any given direction
in a crystal, atoms are evenly spaced. The distance between
adjacent atoms is smallest along the [100] direction. These
-atoms are nearest neighbors to each other. If we imagine the -
atoms to be “hagd” spheres such as those shown in Fig. 1-1,
then we see that the nearest neighbors “touch” each other, and

%



