Water Resource Planning and Development

'Margaret S. Petersen

Water Resource Planning and Development

Margaret S. Petersen

Hydraulic Engineer, U.S. Army, Corps of Engineers, retired Visiting Professor, Department of Civil Engineering and Engineering Mechanics, University of Arizona Library of Congress Cataloging in Publication Data

Petersen, Margaret. (date)

Water resource planning and development.

Includes the text of the National Environmental Policy Act, as amended.

Includes bibliographies and index.

1. Water resources development. 2. Water resources development—United States. 3. Water resources development—Developing countries. 1. United States. National Environmental Policy Act of 1969. 1984. 11. Title. HD1691.P45 1984 333.91'15 83-24571 ISBN 0-13-945908-1

Editorial/production supervision and interior design by Tom Aloisi Manufacturing buyer: Tony Caruso

© 1984 PRENTICE-HALL, INC. Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN: 0-13-945908-1

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

Preface

This book was originally prepared as a teaching aid in an experimental graduate-level course in river basin and project planning in the Department of Civil Engineering and Engineering Mechanics at the University of Arizona. My purpose was to give an overall perspective of principles, procedures, and practical problems involved in water resource planning by presenting material that was widely scattered in the literature as well as in lesser-known or less readily available manuals and guidance of government agencies, primarily the U.S. Army Corps of Engineers and the United Nations. The book also provides a historical overview of water resource planning in the United States and compares the U.S. experience to problems in third-world countries, since many of our graduate students are foreign.

I am grateful to my students who have enriched my life and who, by

their questions, were responsible for clarification of the text.

I also want to express my thanks and acknowledge my indebtedness to colleagues too numerous to name in various offices of the Corps of Engineers over the years for their encouragement, cooperation, and support. Special thanks are due to James B. Smith and Charles S. Mifkovic, Sacramento District, who generously provided encouragement and information that was invaluable in my transition from practicing engineering to teaching, to John J. Cassidy who reviewed the manuscript, and to Steven Skelly whose assistance has made teaching possible.

xiv

Above all, my appreciation goes to Emmett M. Laursen who persuaded me, despite my reluctance, to try teaching with all its rewards and frustrations. Sharing my practical experience with the students and watching them grow has been very rewarding.

Margaret S. Petersen

List of Abbreviations

ac-ft Acre-feet

ASA (CW) Assistant Secretary of the Army for Civil Works

ASCE American Society of Civil Engineers

BEB Beach Erosion Board (now Coastal Engineering Research Center)

BERH Board of Engineers for Rivers and Harbors

BUREC United States Bureau of Reclamation

c Coefficient

CE U.S. Army, Corps of Engineers CEQ Council on Environmental Quality

CERC Coastal Engineering Research Center, CE

CFR Code of Federal Regulations

CP Critical path

CRF Capital recovery factor
DP Dynamic programming
E & D Engineering and design

EIR Environmental impact report (prepared by other than a federal agency)

EIS Environmental impact statement (prepared by a federal agency)

EM Engineer memorandum (CE)
EP Engineer pamphlet (CE)
EQ Environmental quality

ER Engineer regulation (CE)

ETL Engineer technical letter (CE)

FPC Federal Power Commission (now Federal Energy Regulatory Commis-

sion)

ft Feet

xvi

H Head in feet

ha Hectare

IBRD International Bank for Reconstruction and Development (World Bank)

IWC Inland Waterways Commission

km Kilometer kw Kilowatt kwh Kilowatt-hour ln Logarithm

LP Linear programming

m Meter mi Mile

MR & T Mississippi River and Tributaries MRC Mississippi River Commission (CE)

msl Mean sea level

MWP Egyptian Master Water Plan
NED National economic development

NEPA National Environmental Policy Act of 1969

NWC National Waterways Commission (temporary, established 1909); National

Water Commission (temporary, established 1968)

OCE Office of the Chief of Engineers (CE)
OMB Office of Management and Budget

O & M Operation and maintenance

OM & R Operation, maintenance, and replacement

CORBDA Ogun-Oshan River Basin Development Authority, Nigeria

OSE Other social effects

OSWC Oyo State Water Corporation, Nigeria

P Power (kilowatts)
P.L. Public Law

PMF Probable maximum flood

p.w. Present worth

Q Discharge in cubic feet per second RED Regional economic development

SA Secretary of the Army

S & A Supervision and administration

SDF Spillway design flood

SOGREAH Société Grenoblaise d'Etudes Applique Hidrologic

SPF Standard project flood

sq Square

Stat. Statute

TVA Tennessee Valley Authority

U.N. United Nations

UNDP United Nations Development Program

UNDPSF United Nations Development Program Special Fund

U.S. United States

USAID United States Agency for International Development

USC United States Code

WMO World Meteorological Organization
WRC United States Water Resources Council

yr Year

Contents

Preface xiii

1

List of Abbreviations xv INTRODUCTION 1 Definition of Terms 3 Planning-Area Boundaries 5 Levels of Water Resources Planning 10 Framework Planning-Level A 10 Regional or River Basin Planning-Level B 11 Project Planning (Implementation Studies)—Level C 11 Phases of Project Planning 12 Reconnaissance (Preliminary) Study 12 Feasibility Study 12 Postauthorization Planning Study (Detailed Planning Study, Definite Plan Report) 13 Objectives of Water Resources Development 13 Objectives in the United Stres 13 Objectives in the Lesser-Developed Countries 14 Time Frames for Planning 15

Disciplines Involved in Planning 15

Importance of Field Reconnaissance in Planning 16

References 18

2 ADMINISTRATION AND MANAGEMENT OF WATER RESOURCES PLANNING AND DEVELOPMENT 19

Sharing of Responsibility 20

Degrees of Federal Responsibility 20

Role of the Federal Legislative Branch 21

Role of the Federal Executive Branch 21

Role of the Department of the Army and the Corps of Engineers 21

International Agreements 23

Interagency Agreements 23

Role of the States 23

References 23

HISTORY AND PRESENT STATUS OF WATER RESOURCES PLANNING 24

Planning in the United States 26

Planning in Other Countries 35

India 35

Bangladesh 36

Pakistan 38

Thailand 40

Malaysia 42

Ghana 42

Nigeria 46

Egypt 48

References 52

ELEMENTS OF THE PLANNING PROCESS 54

The Plan of Study 54

Identification of Objectives and Goals 55

- 1. Identify Public Concerns 58
- 2. Analyze Resource Management Problems 58
- 3. Define the Study Area 58
- 4. Describe the Base Condition 59
- 5. Project Future Conditions 59
- 6. Establish Planning Objectives 60

Formulation of Alternatives 62

- 1. Identify Management Measures 62
- 2. Consider Plans of Others 62
- 3. Develop Plans 62
- 4. Evaluate Completeness and Implementability of Plans 65

Evaluation of Impacts (Effects) 66

- 1. Determine Sources of Impacts 67
- 2. Identify and Trace Impacts 69
- 3. Measure Impacts 71

Mitigation and Enhancement 80

Recreation Use and Benefits 81

Evaluating Fulfillment of Planning Objectives 81

Appraising Contributions to System of Accounts 84

Evaluating Alternatives 84

Performing Trade-Off Analysis 85

Designating the NED Plan and an EQ Plan 85

Procedures to Be Followed When Reiterating Planning Tasks 86

Economic and Financial Analyses 87

Procedures for Evaluating NED Benefits 87

Period of Analysis 88
Price Level 88
Risk and Uncertainty 89
Cost-Estimating Procedures 89

NED Benefit Analysis 91

Net Economic Benefit Analysis 92

Project Sizing (Scaling) 92

Interest and Discount Rate 94

Determination of Net Economic Benefits 97

Discounting Techniques 97

Procedures for Evaluating EQ Impacts 102

Procedures for Evaluating RED Effects 104

Procedures for Evaluating OSE 105

Plan Selection 106

Cost Allocation 108

t imocation 100

Objective 108 Legislation 109

Administrative Procedures 109

Principles and Methods of Allocation 110

Cost Sharing and Repayment 111

President's Cost-Sharing Policy (6 June 1978) 111
Reagan Administration's Cost-Sharing Proposals 113
Principles and Objectives of Cost Sharing 114
Special Beneficiary Situations 114
Payment 115

Conditions of Local Cooperation 115

References 116

x

5 ENVIRONMENTAL DOCUMENTS 118

Purposes of the National Environmental Policy Act 119

Statutory Provisions of NEPA 119

Interpretations of NEPA by Litigation 120

Interdisciplinary Planning 120

Combining Environmental Documents 121

Energy 121

Significant Environmental Effects 122

Use of Matrices 124

1)

Corps of Engineers' Environmental Impact Statements (EIS) 125

EIS Content 126

Summary 126

Need for and Objectives of Action 127

Alternatives 127

Affected Environment 128

Environmental Effects 129

List of Preparers 132

Public Involvement 132

Index, References, and Appendixes 133

Special Environmental Problems in Developing Countries 133

References 148

RIVER BASIN PLANNING 150

Objectives 152

Elements of Basin Plans 153

Basic Data Required 153

Report Content 154

Case Studies 154
Yuba Basin, California 154
Awash Valley, Ethiopia 158
International River Basins 161
References 164

PROJECT PLANNING 165

Planning Objectives and Means for Solution 165

Compatibility of Objectives 167

Multiple-Purpose Projects 168

Hydrologic and Hydraulic Studies 168

Reservoir Storage for Multiple Purposes 169

Reservoir Sizing-Multiple-Purpose Projects 171

Conservation Yield 171 Flood Control Space 171 Operation Studies 173 Reservoir Size Determination 173

Systems of Small Dams 173

Dam Safety and Spillway Adequacy 174

Level C Planning Reports 176
Organization and Content 177
Typical Report Outline 177

References 182

SYSTEMS ANALYSIS AND MATHEMATICAL MODELING 184

Dichotomy between Researchers and Practitioners 186

Definitions 189

Mathematical Models 189

Case Study—The Egyptian Master Water Plan 192
Objectives 194
Planning Methods and Models 194
Alternative Futures 199

Case Study-Rio Colorado Basin, Argentina 200

In Conclusion 204

References 206

APPENDIXES

xii

- A. Legislation and Reports Pertinent to Water Resources Planning and Development in the United States 207
- B. Major Steps in Conception, Authorization, and Construction of Water Resources Projects by the Corps of Engineers 224
- C. Cost Allocation 226
- D. National Environmental Policy Act of 1969, as Amended 233
- E. Potential Environmental Impacts of Construction and Operation of Storage Projects in Developing Countries 258
- F. Content of Hydrologic and Hydraulic Appendixes 261
- G. Problems and Solutions 267

Index 305

Chapter 1

Introduction

The discussion of water resource planning procedures in this book is based on practice in the United States, and in particular on that of the U.S. Army Corps of Engineers in their civil works program because that is the author's background. Also, most U.S. examples of planning and development described are by the Corps of Engineers. However, the fundamentals of planning are generally universal. Planning everywhere and by anyone is essentially the same, modified only by local conditions and locally imposed constraints. Accordingly, the reader must recognize that the methodology presented probably will require some modification for any specific investigation. Planning guidance of the Corps of Engineers in Engineer Manuals, Regulations, and Technical Letters was the primary source of much of the material presented. While some of the referenced guidance has been rescinded owing to the evolving philosophy of water resource planning and development and because some of the requirements set forth are no longer mandatory, the considerations identified and the procedures discussed afford valid guidance for water resource planning and development in general.

Development and management of water resources involves modification of the hydrologic cycle to regulate the natural water supply to better meet human needs. Planning for water resources development and management is based on recognition of the close interrelationship of the hydrologic cycle with other systems such as:

- · Land use, soil conservation, and watershed management.
- · Groundwater supply and use.

- · Drainage and aquatic weed control.
- Demographics (population characteristics and distribution).
- · Economics.
- · Social well-being.
- · Flora and fauna.
- Public health and control of disease vectors.

In the real world all things are related, but time and financial resources for planning are finite. Therefore, early in the planning process interrelationships must be identified as primary or secondary so that the scope of planning studies can be limited to manageable dimensions while assuring that all relevant factors are considered.

Water resources planning is a systematic study of:

- · Long-range goals for water and related land resources.
- Present and projected future water-related problems and needs.
- · Alternative solutions, including costs, impacts, and benefits.
- The optimum plan.

The need for long-range planning of water resources has become more evident in recent years with population growth and increased development and utilization of the world's resources. There is no substitute for water, and the objectives of planning center on wise use of water resources to avoid future shortages that might otherwise limit a nation's economy or the social well-being of its people.

Because manpower and funding are limited, priorities for resource development and utilization must be established through systematic planning. Wise planning and integrated development of water resources in a river basin serve to assure that no isolated irreversible plan for a part of the basin is implemented that might limit future freedom of choice and also that costs of water resources control measures are minimized.

In the last twenty years our definition of river basin "development" has changed. It was formerly narrowly defined as "economic" development, which entailed improvement of general health and well-being through provision of job opportunities; environmental and social impacts were not directly addressed. Today river basin "development" is defined as encompassing economic, environmental, and social factors. The emphasis has shifted from development programs to water resources management programs.

In the United States prior to 1970, the optimum plan generally considered was that which economic analysis indicated would result in the greatest economic return, such as the highest ratio of benefits to costs, the greatest excess of benefits over costs, or the least-cost plan. When dealing with benefits and costs in economic terms, such analyses (while sometimes complex) are straightforward and relatively free of subjective judgments.

Following passage by the U.S. Congress of the National Environmental Policy Act in 1969, analysis of social and environmental impacts became an integral part of project formulation and evaluation, and these impacts became a major consideration in determining the optimum plan. Initially it was not possible to assess the benefits and losses of such impacts in monetary terms. The general consensus was that they are subjective and lie "in the eye of the beholder," varying with the concerns, interests, and biases of individuals, groups, and political entities.

Subsequently procedures have been developed to forecast and evaluate perceived environmental and social impacts fairly well in the planning process. Many primary environmental and direct economic effects can be measured relatively easily and expressed in monetary terms. Secondary effects are more difficult to assess. Some impacts that cannot be assessed monetarily can be equated with the difference in cost of a project with and without those features resulting in the specific impacts.

What is generally lacking as an integral part of the water resources planning process is a program of systematic monitoring to assess the real impacts of programs over a period of years of operation following completion of construction in order to verify the planning evaluations. Future economic and social conditions that evolve following construction of a project often are affected by external factors that could not be foreseen at the time of planning, and real project impacts often are obscured.

DEFINITION OF TERMS

Some terms commonly used in water resources planning are defined as follows by the Corps of Engineers:

- a. "Alternative plans" are different ways for managing water and related land resources employing structural and/or nonstructural measures.
- b. "Base conditions" are the existing economic, social, and environmental characteristics of the area under study.
- c. "Benefit/cost (B/C) ratio" is the ratio of estimated average annual benefits (for project outputs which can be expressed in monetary terms) to average annual costs (including interest and amortization of construction costs and annual operation, maintenance, and replacement costs).
- d. "Cost allocation" for a multiple-purpose project is the process by which total project costs are apportioned to the various project purposes.
- e. "Detailed plans" are water resources plans for which sufficient feasibility investigations have been conducted for the evaluation and selection of a plan for implementation.
- f. "Economic life" is the projected useful life of a project (assuming adequate maintenance and replacement), or the time in years (usually 100 years) beyond which additional benefits and costs would not influence project economics.