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Preface

This volume contains the notes of lectures given at the School “Quantum
Potential Theory: Structure and Applications to Physics”. This school was
held at the Alfried Krupp Wissenschaftskolleg in Greifswald from February
26 to March 9, 2007. We thank the lecturers for the hard work they ac-
complished in preparing and giving these lectures and in writing these notes.
Their lectures give an introduction to current research in their domains, which
is essentially self-contained and should be accessible to Ph.D. students. We
hope that this volume will help to bring together researchers from the areas
of classical and quantum probability, functional analysis and operator alge-
bras, and theoretical and mathematical physics, and contribute in this way
to developing further the subject of quantum potential theory.

We are greatly indebted to the Alfried Krupp von Bohlen und Halbach-
Stiftung for the financial support, without which the school would not have
been possible. We are also very thankful for the support by the University of
Greifswald and the University of Franche-Comté. One of the organisers (UF)
was supported by a Marie Curie Outgoing International Fellowship of the EU
(Contract Q-MALL MOIF-CT-2006-022137).

Special thanks go to Melanie Hinz who helped with the preparation and
organisation of the school and who took care of all of the logistics.

Finally, we would like to thank all the students for coming to Greifswald
and helping to make the school a success.

Sendai and Greifswald, Uwe Franz
June 2008 Michael Schirmann
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Introduction

The term potential theory comes from 19th century physics, whére the fun-
damental forces like gravity or electrostatic forces were described as the gra-
dients of potentials, i.e. functions which satisfy the Laplace equation. Hence
potential theory was the study of solutions of the Laplace equation. Nowadays
the fundamental forces in physics are described by systems of non-linear par-
tial differential equations such as the Einstein equations and the Yang-Mills
equations, and the Laplace equation arises only as a limiting case. Neverthe-
less, the Laplace equation is still used in applications in many areas of physics
and engineering like heat conduction and electrostatics. And the term “po-
tential theory” has survived as a convenient label for the theory of functions
satisfying the Laplace equation, i.e. so-called harmonic functions.

In the 20th century, with the development of probability and stochastic
processes, it was discovered that potential theory is intimately related to the
theory of Markov processes, in particular diffusion processes and Brownian
motion. The distributions of these processes evolve according to a heat equa-
tion, and invariant distributions satisfy a Laplace-type equation. Conversely,
these processes can be used to express solutions of, e.g., the Laplace equation.
For more details see Nicolas Privault’s lecture “Potential Theory in Classical
Probability” in this volume.

The notions of quantum stochastic processes and quantum Markov proce-
sses were introduced in the 1970’s and allow to describe open quantum
systems in close analogy to classical probability and classical Markov proce-
sses. Roughly speaking, one can now recognize two different trends in the
subsequent development of the theory of quantum Markov processes. The
first is guided by physical applications, studies concrete physically motivated
models, and develops tools for filtering noisy quantum signals or controling
noisy quantum systems. The second aims to develop a mathematical theory,
by generalizing or extending key results of the theory of Markov processes
to the quantum (or noncommutative) case, and by looking for analogues of
important tools that greatly influenced the development of classical poten-
tial theoryv. like stochastic calculus. Dirichlet forms, or boundaries of random
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2 Introduction

walks. In our school the first direction was represented by Luc Bouten’s lec-
ture “Applications of Controlled Quantum Processes in Quantum Optics”,
the second by Philippe Biane'’s lecture “Introduction to Random Walks on
Noncommutative Spaces” and by Fabio Cipriani’s lecture “Noncommutative
Dirichlet Forms”, see also the corresponding chapters of this book.

Besides providing important background material on operator algebras
and noncommutative analogues of function spaces used in other lectures,
Quanhua Xu’s lecture on “Interactions between Quantum Probability and
Operator Space Theory” shows how quantum probability can be applied to
modern functional analysis. For example, a clever choice of sequences of quan-
tum random variables plays an essential role in establishing key results like
noncommutative Khintchine type inequalities.

Central questions from probabilistic potential theory like the computation
of hitting times and the study of the asymptotic behaviour of a walk are also
the main topic in Norio Konno’s lecture on “Quantum Walks”. These quan-
tum walks are not quantum Markov processes in the sense of the lectures
by Biane, Bouten, and Cipriani, but another type of quantum analogue of
random walks and Markov chains, and many of the classical potential the-
oretical methods have interesting analogues adapted to this case. By giving
an introduction and survey of this quickly developing field this lecture was
an enrichment of the school and nicely complements the other chapters.

The goal of the School “Quantum Potential Theory: Structure and Appli-
cations to Physics” and these lecture notes is two-fold. First of all we want to
provide an introduction to the rapidly developing theory of quantum Markov
semigroups and quantum Markov processes with its manifold aspects rang-
ing from functional analysis and probability theory to quantum physics. We
hope that we have succeeded in preparing a monograph that is accessible
to graduate students in mathematics and physics. But furthermore we also
hope that this book will catch the interest of experienced mathematicians
and physicists working in this field or related fields, in order to stimulate
more communication between researchers working on “pure” and “applied”
aspects. We believe that a strong collaboration between these communities
will be to everybody’s benefit. Keeping in mind the physical applications will
help to sharpen the theoreticians’ eye for the relevant questions and prop-
crties, and new powerful mathematical tools will allow to get a better and
deeper understanding of concrete physical systems.



Potential Theory in Classical
Probability

Nicolas Privault

Abstract These notes are an elementary introduction to classical poten-
tial theory and to its connection with probabilistic tools such as stochastic
calculus and the Markov property. In particular we review the probabilistic
interpretations of harmonicity, of the Dirichlet problem, and of the Poisson
equation using Brownian motion and stochastic calculus.

1 Introduction

The origins of potential theory can be traced to the physical problem of
reconstructing a repartition of electric charges inside a planar or a spatial
domain, given the measurement of the electrical field created on the boundary
of this domain.

In mathematical analytic terms this amounts to representing the values of
a function h inside a domain given the data of the values of h on the boundary
of the domain. In the simplest case of a domain empty of electric charges,
the problem can be formulated as that of finding a harmonic function h on
E (roughly speaking, a function with vanishing Laplacian, see § 2.2 below),
given its values prescribed by a function f on the boundary OF, i.e. as the
Dirichlet problem:

Ah(y) =0, ye Lk,

h(y) = f(y), ye€dE.

N. Privault

Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue,
Kowloon Tong, Hong Kong

e-mail: nprivaul@cityu.cdu.hk
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4 N. Privault

Close connections between the notion of potential and the Markov property
have been observed at early stages of the development of the theory, see e.g.
[Doo84] and references therein. Thus a number of potential theoretic problems
have a probabilistic interpretation or can be solved by probabilistic methods.

These notes aim at gathering both analytic and probabilistic aspects of
potential theory into a single document. We partly follow the point of view
of Chung [Chu95] with complements on analytic potential theory coming
from Helms [Hel69], some additions on stochastic calculus, and probabilistic
applications found in Bass [Bas98].

More precisely, we proceed as follow. In Section 2 we give a summary
of classical analytic potential theory: Green kernels, Laplace and Poisson
equations in particular, following mainly Brelot [Bre65], Chung [Chu95] and
Helms [Hel69]. Section 3 introduces the Markovian setting of semigroups
which will be the main framework for probabilistic interpretations. A sample
of references used in this domain is Ethier and Kurtz [EK86]; Kallenberg
[Kal02], and also Chung [Chu95]. The probabilistic interpretation of poten-
tial theory also makes significant use of Brownian motion and stochastic
calculus. They are summarized in Section 4, see Protter [Pro05], Ikeda and
Watanabe [IW89], however our presentation of stochastic calculus is given
in the framework of normal martingales due to their links with quantum
stochastic calculus, cf. Biane [Bia93]. In Section 5 we present the prob-
abilistic connection between potential theory and Markov processes, fol-
lowing Bass [Bas98], Dynkin [Dyn65], Kallenberg [Kal02], and Port and
Stone [PS78]. Our description of the Martin boundary in discrete time follows
that of Revuz [RevT75].

2 Analytic Potential Theory

2.1 Electrostatic Interpretation

Let E denote a closed region of R™, more precisely a compact subset having
a smooth boundary OF with surface measure o. Gauss’s law is the main tool
for determining a repartition of electric charges inside F, given the values of
the electrical field created on OF. It states that given a repartition of charges
q(dz) the flux of the electric field U across the boundary JF is proportional
to the sum of electric charges enclosed in E. Namely we have

[ o(dz) = e / (n(z), U(z))o(dz), (2.1)
E OF

where ¢(dz) is a signed measure representing the distribution of electric
charges, g > 0 is the electrical permittivity constant, U(z) denotes the
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electric field at x € OF, and n(z) represents the outer (i.e. oriented towards
the exterior of E) unit vector orthogonal to the surface OF.

On the other hand the divergence theorem, which can be viewed as a
particular case of the Stokes theorem, states that if U : E — R" is a C!
vector field we have

/divU(x)d:r::/ (n(z),U(zx))o(dx), (2.2)
E

oE

where the divergence div U is defined as

) = 9U;
divU(z) = Z D (z).
i=1 8

The divergence theorem (2.2) can be interpreted as a mathematical formula-
tion of the Gauss law (2.1). Under this identification, div U(z) is proportional
to the density of charges inside E, which leads to the Maxwell equation

e divU(z)dz = q(dz), (2.3)

where g(dz) is the distribution of electric charge at x and U is viewed as the
induced electric field on the surface OF.

When ¢(dz) has the density g(x) at z, i.e. g(dx) = g(x)dx, and the field
U(x) derives from a potential V : R™ — R, i.e. when

U(z) = VV(z), z € E,
Maxwell’s equation (2.3) takes the form of the Poisson equation:

€AV (z) = q(z), z € E, (2.4)
where the Laplacian A = divV is given by

=L 8%V
AV (x) = A 6_3;3(”3)’ z€E.
=1
In particular, when the domain E is empty of electric charges, the potential
V satisfies the Laplace equation

AV(z)=0 =z€E.

As mentioned in the introduction, a typical problem in classical potential
theory is to recover the values of the potential V (z) inside E from its values on
the boundary OF, given that V(z) satisfies the Poisson equation (2.4). This
can be achieved in particular by representing V' (z), r € E, as an integral with
respect to the surface measure over the boundary 0F, or by direct solution
of the Poisson equation for V (x).
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Consider for example the Newton potential kernel

q 1
Vix) = , reR" ,
( ) €0Sn “.’L‘ _ y||n_2 \{y}
created by a single charge g at y € R™, where sy = 27, s3 = 4m, and in

general
271.71/2

= T/

is the surface of the unit n — 1-dimensional sphere in R"™.

n > 2,

The electrical field created by V is

q -y n
U(ZC} pe= VV(:L‘) = —n ”x — y”"”l’ z€eR \{y},

cf, Figure 1. Letting B(y,r), resp. S(y,r), denote the open ball, resp. the
sphere, of center y € R™ and radius » > 0, we have

/ Vi(z dm—/ (n(z), VV(z))o(dz)
B(y,r) S(y,r)

n(z), U(z))o(dz)

I
m\

yr)

Ly
€0

where o denotes the surface measure on S(y,r).
From this and the Poisson equation (2.4) we deduce that the repartition of
electric charge is

q(dzx) = qb,(dx)

i.e. we recover the fact that the potential V is generated by a single charge
located at y. We also obtain a version of the Poisson equation (2.4) in distri-

bution sense: ;
AmW = Sn&y(dﬂ}'),

where the Laplacian A, is taken with respect to the variable x. On the other
hand, taking E = B(0,7)\B(0, p) we have OF = S(0,r) U S(0, p) and

/ AV (2)dz = / (n(z), VV (2))o(dz) + / (n(z), VV (z))o(dz)
E S(0,r)

S(0,p)
=cSp, — ¢Sy =0,

hence 1
A —_—— 0, S Rn .
Il — y||n—2 M)

The electrical permittivity €; will be set equal to 1 in the sequel.
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Fig. 1 Electrical field generated by a point mass at y = 0.

2.2 Harmonic Functions

The notion of harmonic function will be first introduced from the mean value
property. Let

oy (dy) = o(dy)

Snrn_l

denote the normalized surface measure on S(z,7), and recall that

/f(:c)da::snfo r”_l/s( )f(z)oﬁ’(dz)dr.
Yy,r

Definition 2.1. A continuous real-valued function on an open subset O of
R" is said to be harmonic, resp. superharmonic, in O if one has

f(z) = ]S L Wt

resp.

f(z) > /S L ),

for all z € O and r > 0 such that B(z,r) C O.
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Next we show the equivalence between the mean value property and the
vanishing of the Laplacian.

Proposition 2.2. A C? function f is harmonic, resp. superharmonic, on an
open subset O of R™ if and only if it satisfies the Laplace equation

Af(z) =0, x € 0,
resp. the partial differential inequality
Af(z) <0, z € 0.

Proof. In spherical coordinates, using the divergence formula and the identity

d
ottt = [ @V + oot
T J5(0,1) 5(0,1) .
=L Af(y + rx)dz,
Sn JB(0,1)

vields

/ Af(z)dx = r™1 / Af(y +rx)dx
B(y,r)

B(0,1)
= g,r"2 / (z, Vf(y + rx))a?(dm)
5(0,1)

d
= snr”_zd— / fly+ ra:)o‘l) (dx)
T Js(0,1)

d
= snr”_z—/ f(z)o¥(dx).
dT' S(y,r)

If f is harmonic, this shows that

/ Af(x)dr =0,
B(y.7)

for all y € E and r > 0 such that B(y,r) C O, hence Af = 0 on O.
Conversely, if Af = 0 on O then

/ f(z)o¥ (dz)
S(y,r)

is constant in r, hence

f(y) = lim /S( )f(.r)ag(dx) = / f(z)o¥(dz), r>0.

p—0 S(y,r)

The proof is similar in the case of superharmonic functions. O
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The fundamental harmonic functions based at y € R™ are the functions which
are harmonic on R™\{y} and depend only on r = ||z—y||, y € R™. They satisfy
the Laplace equation

Ah(z) =0, =z €R",

in spherical coordinates, with

@

anr) = a4 DD

r dr ().

In case n = 2, the fundamental harmonic functions are given by the logarith-
mic potential

1
—S—log lz—yll, =#uy,
hy(x) = 2 (2:5)

+0o0, =Yy,

and by the Newton potential kernel in case n > 3:

1 1
(n —2)sn [l& —y|I"~2’

T #y,

hy(z) = (2.6)
+00, r=y.

More generally, for a € R and y € R™, the function
z = [lz—yll%

is superharmonic on R™, n > 3, if and only if a € [2 — n,0], and harmonic
when a =2 — n.
We now focus on the Dirichlet problem on the ball £ = B(y,r). We consider

1
ho(’f‘) = —g lOg(T), T > 0,

in case n = 2, and

1

- >0,
(n —2)s,rn—2 "

ho(r)

if n > 3, and let
x* - —_ + L(m )
TV =2t Y



