B e —————— e AT
2 R 2O B0 .

(FZXHR « 2 2 kK)

Computer Graphics Second Edition

el ——
& e

=
The perfect aid for higher grades!

.
Covers Computer Graphics in 2D and 3D—

supplements any class text

Simplifies all aspects of creating digital graphics

..

Over 350 solved problems step-by-step
-

Ideal for independent study!

Explains new techniques in
shadowing and photo-realism

e s ———— e
s T e ——

; . ZhiGang Xiang .,
’)y Plastock

M T AR

China Machine Press

it E A
VIS5 RS

(TR

PUTER GRAPHIC

(32) Zhigang Xiang Roy Plastock #*

@Vlﬂl!ltﬂ;tt
ina Mac ress

ZhiGang Xiang & Roy Plastock: Computer Graphics, 2E (ISBN 0-07-135781-5).

Copyright©2002 by The McGraw-Hill Companies, Inc. All rights reserved. Jointly
published by China Machine Press/McGraw-Hill. This edition may be sold in the People’s
Republic of China only. This book cannot be re-exported and is not for sale outside the

People’s Republic of China.

A5 B SCRZENAR i 3€ I McGraw-Hill 23 G2 ACHUME 1olk: H R4 76 Hh K Bl B P Al K
HARE AT, REHREVFAT, AHRLMEM G REbE. B Hl R A o EfEsy.

A5 3 H A McGraw-Hill 23 RIEOEH (R %, TAREELHHE.

WAL A, RALIE

ABRENEIES: E=: 01-2002-2181

BHER®E (CIP) ¥

HRILER S IS RE: B2 /1 (%) Al (Xiang, Z.G.), (%) Ehi#iEn
(Plastock, R.) 2. —Jb30: WU TV AR, 2002.8

(LML I/RT RI)

B3 Computer, Sraphics, SecondEdition

ISBN 7-111-10417-X

I.if 0.0 @ & . itEPEEE-2E-3%5c V. TP391-44

Hh [R A B A T CIPRAR A% (2002) 430385015

HLAE Tl tHAR At (Al pai< v 7 225 Bskcdnis 100037)
T iEguiR: £ =

AL EN R DR - 45 At stk 4T R 47
20024-8 H 55 1R 1k El R

787mm x 1092mm 1/16 - 22.5F]2k

El % 0001-3 000/}

= #r: 35.005¢

LA, A Bl BT, GR5T, hAHKiTEHER

PREFACE

We live in a world full of scientific and technological advances. In recent years it has become quite difficult
not to notice the proliferation of something called computer graphics. Almost every computer system is set up to
allow the user to interact with the system through a graphical user interface, where information on the display
screen is conveyed in both textual and graphical forms. Movies and video games are popular showcases of the
latest technology for people, both young and old. Watching the TV for a while, the likelihood is that you will
see the magic touch of computer graphics in a commercial.

This book is both a self-contained text and a valuable study aid on the fundamental principles of computer
graphics. It takes a goal-oriented approach to discuss the important concepts, the underlying mathematics, and
the algorithmic aspects of the computerized image synthesis process. It contains hundreds of solved problems
that help reinforce one’s understanding of the field and exemplify effective problem-solving techniques.

Although the primary audience are college students taking a computer graphics course in a computer
science or computer engineering program, any educated person with a desire to look into the inner workings of
computer graphics should be able to learn from this concise introduction. The recommended prerequisites are
some working knowledge of a computer system, the equivalent of one or two semesters of programming, a basic
understanding of data structures and algorithms, and a basic knowledge of linear algebra and analytical
geometry.

The field of computer graphics is characterized by rapid changes in how the technology is used in everyday
applications and by constant evolution of graphics systems. The life span of graphics hardware seems to be
getting shorter and shorter. An industry standard for computer graphics often becomes obsolete before it is
finalized. A programming language that is a popular vehicle for graphics applications when a student begins his
or her college study is likely to be on its way out by the time he or she graduates.

In this book we try to cover the key ingredients of computer graphics that tend to have a lasting value (only
in relative terms, of course). Instead of compiling highly equipment-specific or computing environment-specific
information, we strive to provide a good explanation of the fundamental concepts and the relationship between
them. We discuss subject matters in the overall framework of computer graphics and emphasize mathematical
and/or algorithmic solutions. Algorithms are presented in pseudo-code rather than a particular programming
language. Examples are given with specifics to the extent that they can be easily made into working versions on
a particular computer system.

We believe that this approach brings unique benefit to a diverse group of readers. First, the book can be read
by itself as a general introduction to computer graphics for people who want technical substance but not the
burden of implementational overhead. Second, it can be used by instructors and students as a resource book to
supplement any comprehensive primary text. Third, it may serve as a stepping-stone for practitioners who want
something that is more understandable than their graphics system’s programmer’s manuals.

The first edition of this book has served its audience well for over a decade. I would like to salute and thank
my coauthors for their invaluable groundwork. The current version represents a significant revision to the
original, with several chapters replaced to cover new topics, and the remaining material updated throughout the
rest of the book. I hope that it can serve our future audience as well for years to come.

Thank you for choosing our book. May you find it stimulating and rewarding.

ZHIGANG XIANG

I

CHAPTER 1 INTRODUCTION 1
1.1 A Mini-survey

—

1.2 What’s Ahead 5
CHAPTER 2 IMAGE REPRESENTATION 6
2.1 The RGB Color Model 7
2.2 Direct Coding 8
2.3 Lookup Table 9
2.4 Display Monitor 9
2.5 Printer 11
2.6 Image Files 14
2.7 Setting the Color Attribute of Pixels 15
2.8 Example: Visualizing the Mandelbrot Set 16
CHAPTER 3 SCAN CONVERSION 25
3.1 Scan-Converting a Point 25
3.2 Scan-Converting a Line 26
3.3 Scan-Converting a Circle 29
3.4 Scan-Converting an Ellipse 35
3.5 Scan-Converting Arcs and Sectors 40
3.6 Scan-Converting a Rectangle 41
3.7 Region Filling 42
3.8 Scan-Converting a Character 45
3.9 Anti-Aliasing 47
3.10 Example: Recursively Defined Drawings 51
CHAPTER 4 TWO-DIMENSIONAL TRANSFORMATIONS 68
4.1 Geometric Transformations 68
4.2 Coordinate Transformations 71
4.3 Composite Transformations 73
4.4 Instance Transformations 76
CHAPTER 5 TWO-DIMENSIONAL VIEWING AND CLIPPING 89
5.1 Window-to-Viewport Mapping 90

v

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CONTENTS

5.2 Point Clipping

5.3 Line Clipping

5.4 Polygon Clipping

5.5 Example: A 2D Graphics Pipeline

THREE-DIMENSIONAL TRANSFORMATIONS

6.1 Geometric Transformations
6.2 Coordinate Transformations
6.3 Composite Transformations’
6.4 Instance Transformations

MATHEMATICS OF PROJECTION

7.1 Taxonomy of Projection
7.2 Perspective Projection
7.3 Parallel Projection

THREE-DIMENSIONAL VIEWING AND CLIPPING

8.1 Three-Dimensional Viewing

8.2 Clipping

8.3 Viewing Transformation

8.4 Example: A 3D Graphics Pipeline

GEOMETRIC REPRESENTATION

9.1 Simple Geometric Forms

9.2 Wireframe Models

9.3 Curved Surfaces

9.4 Curve Design

9.5 Polynomial Basis Functions
9.6 The Problem of Interpolation
9.7 The Problem of Approximation
9.8 Curved-Surface Design

9.9 Transforming Curves and Surfaces
9.10 Quadric Surfaces

9.11 Example: Terrain Generation

HIDDEN SURFACES

10.1 Depth Comparisons
10.2 Z-Buffer Algorithm
10.3 Back-Face Removal
10.4 The Painter’s Algorithm
10.5 Scan-Line Algorithm
10.6 Subdivision Algorithm

\Y

91
91
96
99

114

114
117
117
118

128

129
129
132

151

151
155
158
159

174

174
175
176
176
177
179
181
184
186
186
189

197

197
199
200
200
203
207

CHAPTER 11

CHAPTER 12

Appendix 1

Appendix 2

CONTENTS

10.7 Hidden-Line Elimination
10.8 The Rendering of Mathematical Surfaces

COLOR AND SHADING MODELS

11.1 Light and Color

11.2 The Phong Model

11.3 Interpolative Shading Methods
11.4 Texture

RAY TRACING

12.1 The Pinhole Camera

12.2 A Recursive Ray-Tracer

12.3 Parametric Vector Representation of a Ray
12.4 Ray-Surface Intersection

12.5 Execution Efficiency

12.6 Anti-Aliasing

12.7 Additional Visual Effects

MATHEMATICS FOR TWO-DIMENSIONAL
COMPUTER GRAPHICS

Al.1 The Two-Dimensional Cartesian Coordinate System
Al.2 The Polar Coordinate System

Al.3 Vectors

Al.4 Matrices

Al.5 Functions and Transformations

MATHEMATICS FOR THREE-DIMENSIONAL
COMPUTER GRAPHICS

A2.1 Three-Dimensional Cartesian Coordinates
A2.2 Curves and Surfaces in Three Dimensions
A2.3 Vectors in Three Dimensions

A2.4 Homogeneous Coordinates

ANSWERS TO SUPPLEMENTARY PROBLEMS

INDEX

VI

209
209

229

229
234
236
239

251

251
252
253
256
258
260
261

273

273
277
278
281
283

298

298
300
303
307

321

342

CHAPTER 1

Introduction

r graphics is generally regarded as a branch of computer science that deals with the theory and
for computerized image synthesis. A computer-generated image can depict a scene as simple as
3¢ of a triangle on a uniform background and as complex as a magnificent dinosaur in a tropical
t Mhow do these things become part of the picture? What makes drawing on a computer different
 sketching with a pen or photographing with a camera? In this chapter we will introduce some
concepts and outline the relationship among these concepts. The goal of such a mini-survey of
of computer graphics is to enable us to appreciate the various answers to these questions that we

i
-

“in the rest of the book not only in their own right but also in the context of the overall

'MINI-SURVEY

t's consider drawing the outline of a triangle (see Fig. 1-1). In real life this would begin with a
in our mind regarding such geometric characteristics as the type and size of the triangle, followed
n to move a pen across a piece of paper. In computer graphics terminology, what we have
called the object definition, which defines the triangle in an abstract space of our choosing.
ontinuous and is called the object space. Our action to draw maps the imaginary object into
aper, which constitutes a continuous display surface in another space called the image space.
ction is further influenced by our choice regarding such factors as the location and
the triangle. In other words, we may place the triangle in the middle of the paper, or we may
the upper left corner. We may have the sharp corner of the triangle pointing to the right, or we
ting to the left.

ble process takes place when a computer is used to produce the picture. The major
eps involved in the process give rise to several important areas of computer graphics. The
 to the need to define objects, such as the triangle, in an efficient and effective manner is
. representation. In our example we can place a two-dimensional Cartesian coordinate
object space. The triangle can then be represented by the x and v coordinates of its three
understanding that the computer system will connect the first and second vertices with a
the second and third vertices with another line segment, and the third and first with yet
ent.

area of computer graphics that deals with the placement of the triangle is called
. Here we use matrices to realize the mapping of the triangle to its final destination in the
>. We can set up the transformation matrix to control the location and orientation of the
djsﬂayed triangle. We can even enlarge or reduce its size. Furthermore, by using multiple settings for the

I

2 INTRODUCTION [CHAP. 1

Object space

Image space

Fig. 1-1 Drawing a triangle.

transformation matrix, we can instruct the computer to display several triangles of varying size and
orientation at different locations, all from the same model in the object space.

At this point most readers may have already been wondering about the crucial difference between the
triangle drawn on paper and the triangle displayed on the computer monitor (an exaggerated version of
what you would see on a real monitor). The former has its vertices connected by smooth edges, whereas
the latter is not exactly a line-drawing. The fundamental reason here is that the image space in computer
graphics is, generally speaking, not continuous. It consists of a set of discrete pixels, i.e., picture elements,
that are arranged in a row-and-column fashion. Hence a horizontal or vertical line segment becomes a
group of adjacent pixels in a row or column, respectively, and a slanted line segment becomes something
that resembles a staircase. The area of computer graphics that is responsible for converting a continuous
figure, such as a line segment, into its discrete approximation is called scan conversion.

The distortion introduced by the conversion from continuous space to discrete space is referred to as
the aliasing effect of the conversion. While reducing the size of individual pixels should make the
distortion less noticeable, we do so at a significant cost in terms of computational resources. For instance, if
we cut each pixel by half in both the horizontal and the vertical direction we would need four times the
number of pixels in order to keep the physical dimension of the picture constant. This would translate into,
among other things, four times the memory requirement for storing the image. Exploring other ways to
alleviate the negative impact of the aliasing effect is the focus of another area of computer graphics called
anti-aliasing.

Putting together what we have so far leads to a simplified graphics pipeline (see Fig. 1-2), which
exemplifies the architecture of a typical graphics system. At the start of the pipeline, we have primitive
objects represented in some application-dependent data structures. For example, the coordinates of the
vertices of a triangle, viz., (x, ,), (x5, ¥;), and (x3, y3), can be easily stored in a 3 x 2 array. The graphics
system first performs transformation on the original data according to user-specified parameters, and then
carries out scan conversion with or without anti-aliasing to put the picture on the screen. The coordinate
system in the middle box in Fig. 1-2 serves as an intermediary between the object coordinate system on the

x X
Representation Transformation Scan conversion

Fig. 1-2 A simple graphics pipeline.

CHAP. 1] INTRODUCTION 3

left and the image or device coordinate system on the right. It is called the world coordinate system,
representing where we place transformed objects to compose tlie picture we want to draw. The example in
the box shows two triangles: the one on the right is a scaled copy of the original that is moved up and to the
right, the one on the left is another scaled copy of the original that is rotated 90° counterclockwise around
the origin of the coordinate system and then moved up and to the right in the same way.

In a typical implementation of the graphics pipeline we would write our application program in a host
programming language and call library subroutines to perform graphics operations. Some subroutines are
used to prescribe, among other things, transformation parameters. Others are used to draw, i.e., to feed
original data into the pipeline so current system settings are automatically applied to shape the end product
coming out of the pipeline, which is the picture on the screen.

Having looked at the key ingredients of what is called two-dimensional graphics, we now turn our
attention to three-dimensional graphics. With the addition of a third dimension one should notice the
profound distinction between an object and its picture. Figure 1-3 shows several possible ways to draw a
cubic object, but none of the drawings even come close to being the object itself. The drawings simply
represent projections of the three-dimensional object onto a two-dimensional display surface. This means
that besides three-dimensional representation and transformation, we have an additional area of computer
graphics that covers projection methods.

Fig. 1-3 Several ways to depict a cube.

Did you notice that each drawing in Fig. 1-3 shows only three sides of the cubic object? Being a solid
three-dimensional object the cube has six plane surfaces. However, we depict it as if we were looking at it
in real life. We only draw the surfaces that are visible to us. Surfaces that are obscured from our eyesight
are not shown. The area of computer graphics that deals with this computational task is called hidden
surface removal. Adding projection and hidden surface removal to our simple graphics pipeline, right after
transformation but before scan conversion, results in a prototype for three-dimensional graphics.

Now let’s follow up on the idea that we want to produce a picture of an object in real-life fashion. This
presents a great challenge for computer graphics, since there is an extremely effective way to produce such
a picture: photography. In order to generate a picture that is photo-realistic, i.e., that looks as good as a
photograph, we need to explore how a camera and nature work together to produce a snapshot.

When a camera is used to photograph a real-life object illuminated by a light source, light energy
coming out of the light source gets reflected from the object surface through the camera lens onto the
negative, forming an image of the object. Generally, the part of the object that is closer to the light source
should appear brighter in the picture than the part that is further away, and the part of the object that is
facing away from the light source should appear relatively dark. Figure 1-4 shows a computer-generated

Fig. 1-4 Two shaded spheres.

4 INTRODUCTION [CHAP. 1

image that depicts two spherical objects illuminated by a light source that is located somewhere between
the spheres and the “camera” at about the ten to eleven o’clock position. Although both spheres have
gradual shadings, the bright spot on the large sphere looks like a reflection of the light source and hence
suggests a difference in their reflectance property (the large sphere being shinier than the small one). The
mathematical formulae that mimic this type of optical phenomenon are referred to as local illumination
models, for the energy coming directly from the light source to a particular object surface is not a full
account of the energy arriving at that surface. Light energy is also reflected from one object surface to
another, and it can go through a transparent or translucent object and continue on to other places.
Computational methods that strive to provide a more accurate account of light transport than local
illumination models are referred to as global illumination models.

Now take a closer look at Fig. 1-4. The two objects seem to have super-smooth surfaces. What are they
made of? How can they be so perfect? Do you see many physical objects around you that exhibit such
surface characteristics? Furthermore, it looks like the small sphere is positioned between the light source
and the large sphere. Shouldn’t we see its shadow on the large sphere? In computer graphics the surface
shading variations that distinguish a wood surface from a marble surface or other types of surface are
referred to as surface textures. There are various techniques to add surface textures to objects to make them
look more realistic. On the other hand, the computational task to include shadows in a picture is called
shadow generation.

Before moving on to prepare for a closer look at each of the subject areas we have introduced in this
mini-survey, we want to briefly discuss a couple of allied fields of computer science that also deal with
graphical information.

Image Processing

The key element that distinguishes image processing (or digital image processing) from computer
graphics is that image processing generally begins with images in the image space and performs pixel-
based operations on them to produce new images that exhibit certain desired features. For example, we
may reset each pixel in the image displayed on the monitor screen in Fig. 1-1 to its complementary color
(e.g., black to white and white to black), turning a dark triangle on a white background to a white triangle
on a dark background, or vice versa. While each of these two fields has its own focus and strength, they
also overlap and complement each other. In fact, stunning visual effects are often achieved by using a
combination of computer graphics and image processing techniques.

Computer—Human Interaction

While the main focus of computer graphics is the production of images, the field of computer—human
interaction promotes effective communication between man and machine. The two fields join forces when
it comes to such areas as graphical user interfaces. There are many kinds of physical devices that can be
attached to a computer for the purpose of interaction, starting with the keyboard and the mouse. Each
physical device can often be programmed to deliver the function of various logical devices (e.g., Locator,
Choice—see below). For example, a mouse can be used to specify locations in the image space (acting as a
Locator device). In this case a cursor is often displayed as visual feedback to allow the user see the
locations being specified. A mouse can also be used to select an item in a pull-down or pop-up manual
(acting as a Choice device). In this case it is the identification of the selected manual item that counts and
the item is often highlighted as a whole (the absolute location of the cursor is essentially irrelevant). From
these we can see that a physical device may be used in different ways and information can be conveyed to
the user in different graphical forms. The key challenge is to design interactive protocols that make
effective use of devices and graphics in a way that is user-friendly—easy, intuitive, efficient, etc.

CHAP. 1] INTRODUCTION 5

1.2 WHAT’S AHEAD

We hope that our brief flight over the landscape of the graphics kingdom has given you a good
impression -of some of the important landmarks and made you eager to further your exploration. The
following chapters are dedicated to the various subject areas of computer graphics. Each chapter begins
with the necessary background information (e.g., context and terminology) and a summary account of the
material to be discussed in subsequent sections.

We strive to provide clear explanation and inter-subject continuity in our presentation. Illustrative
examples are used freely to substantiate discussion on abstract concepts. While the primary mission of this
book is to offer a relatively well-focused introduction to the fundamental theory and underlying
technology, significant variations in such matters as basic definitions and implementation protocols are
presented in order to have a reasonably broad coverage of the field. In addition, interesting applications are
introduced as early as possible to highlight the usefulness of the graphics technology and to encourage
those who are eager to engage in hands-on practice.

Algorithms and programming examples are given in pseudo-code that resembles the C programming
language, which shares similar syntax and basic constructs with other widely used languages such as C++
and Java. We hope that the relative simplicity of the C-style code presents little grammatical difficulty and
hence makes it easy for you to focus your attention on the technical substance of the code.

There are numerous solved problems at the end of each chapter to help reinforce the theoretical
discussion. Some of the problems represent computation steps that are omitted in the text and are
particularly valuable for those looking for further details and additional explanation. Other problems may
provide new information that supplements the main discussion in the text.

age Representation

ge, or image for short, is composed of discrete pixels or picture elements. These pixels are
row-and-column fashion to form a rectangular picture area, sometimes referred to as a raster.
tal number of pixels in an image is a function of the size of the image and the number of
t length (e.g. inch) in the horizontal as well as the vertical direction. This number of pixels per
referred to as the resolution of the image. Thus a 3 x 2 inch image at a resolution of 300
h would have a total of 540,000 pixels.

y image size is given as the total number of pixels in the horizontal direction times the total
ixels in the vertical direction (e.g., 512 x 512, 640 x 480, or 1024 x 768). Although this
pkes it relatively straightforward to gauge the total number of pixels in an image, it does not
of the image or its resolution, as defined in the paragraph above. A 640 x 480 image would
hes by 5 inches when presented (e.g., displayed or printed) at 96 pixels per inch. On the
ould measure 1.6 inches by 1.2 inches at 400 pixels per inch.

f an image’s width to its height, measured in unit length or number of pixels, is referred to
10. Both a 2 x 2 inch image and a 512 x 512 image have an aspect ratio of 1/1, whereas
nch image and a 1024 x 768 image have an aspect ratio of 4/3.

pixels in an image can be referenced by their coordinates. Typically the pixel at the lower
| image is considered to be at the origin (0, 0) of a pixel coordinate system. Thus the pixel at
orner of a 640 x 480 image would have coordinates (639, 0), whereas the pixel at the
r would have coordinates (639, 479).

composing an image on a computer is essentially a matter of setting pixel values. The
of the pixels taking on different color attributes give us what we see as a picture. In this
ptroduce the basics of the most prevailing color specification method in computer graphics
n discuss the representation of images using direct coding of pixel colors (Sect. 2.2)
lpokup-table approach (Sect. 2.3). Following a discussion of the working principles of two
¢ presentation devices, the display monitor (Sect. 2.4) and the printer (Sect. 2.5), we
s as the primary means of image storage and transmission (Sect. 2.6). We then take a
the most primitive graphics operations, which primarily deal with setting the color
Is (Sect. 2.7). Finally, to illustrate the construction of beautiful images directly in the
pace, we introduce the mathematical background and detail the algorithmic aspects of
Mandelbrot set (Sect. 2.8).

CHAP. 2] IMAGE REPRESENTATION 7

2.1 THE RGB COLOR MODEL

Color is a complex, interdisciplinary subject spanning from physics to psychology. In this section we
only introduce the basics of the most widely used color representation method in computer graphics. We
will have additional discussion later in another chapter.

Figure 2-1 shows a color coordinate system with three primary colors: R (red), G (green), and B
(blue). Each primary color can take on an intensity value ranging from 0 (off—lowest) to 1 (on—highest).
Mixing these three primary colors at different intensity levels produces a variety of colors. The collection
of all the colors obtainable by such a linear combination of red, green, and blue forms the cube-shaped
RGB color space. The corner of the RGB color cube that is at the origin of the coordinate system
corresponds to black, whereas the corner of the cube that is diagonally opposite to the origin represents
white. The diagonal line connecting black and white corresponds to all the gray colors between black and
white. It is called the gray axis.

AG
green | (0, 1,0) yellow
(1,1,0)
cyan white
,1,1) (1LY
/'\\ i
black |/ grayaxis |rog R
(0,0,0) 1,0,00 ~
blue
20,01 (1,0, 1)

magenta

Fig. 2-1 The RGB color space.

Given this RGB color model an arbitrary color within the cubic color space can be specified by its
color coordinates: (r, g, b). For example, we have (0, 0, 0) for black, (1, 1, 1) for white, (1, 1,0) for yellow,
etc. A gray color at (0.7,0.7,0.7) has an intensity halfway between one at (0.9,0.9,0.9) and one at
(0.5,0.5,0.5).

Color specification using the RGB model is an additive process. We begin with black and add on the
appropriate primary components to yield a desired color. This closely matches the working principles of
the display monitor (see Sect. 2.4). On the other hand, there is a complementary color model, called the
CMY color model, that defines colors using a subtractive process, which closely matches the working
principles of the printer (see Sect. 2.5).

In the CMY model we begin with white and take away the appropriate primary components to yield a
desired color. For example, if we subtract red from white, what remains consists of green and blue, which
is cyan. Looking at this from another perspective, we can use the amount of cyan, the complementary color
of red, to control the amount of red, which is equal to one minus the amount of cyan. Figure 2-2 shows a
coordinate system using the three primaries’ complementary colors: C (cyan), M (magenta), and Y
(yellow). The corner of the CMY color cube that is at (0, 0, 0) corresponds to white, whereas the corner of
the cube that is at (1, 1, 1) represents black (no red, no green, no blue). The following formulas summarize
the conversion between the two color models:

(5)-0)-() (- ()-C)

8 IMAGE REPRESENTATION [CHAP. 2

AM
magenta| (0, 1, 0) blue
(1,1,0)
red black
0,1,1) 1,1,1)
V\\ ‘
white gray axis | cyan E
(0,0,0) 1.0.0) >
yellow
Y 0,0, 1) green (1,0, 1)

Fig. 2-2 The CMY color space.

2.2 DIRECT CODING

Image representation is essentially the representation of pixel colors. Using direct coding we allocate a
certain amount of storage space for each pixel to code its color. For example, we may allocate 3 bits for
each pixel, with one bit for each primary color (see Fig. 2-3). This 3-bit representation allows each primary
to vary independently between two intensity levels: 0 (off) or 1 (on). Hence each pixel can take on one of
the eight colors that correspond to the corners of the RGB color cube.

bit 1: r bit2: g bit 3: b color name

0 black
1 blue
0 green
1 cyan
0 red
1 magenta
0 yellow
1

—_— e — OO O O

_— 0 O = = O O

white

Fig. 2-3 Direct coding of colors using 3 bits.

A widely accepted industry standard uses 3 bytes, or 24 bits, per pixel, with one byte for each primary
color. This way we allow each primary color to have 256 different intensity levels, corresponding to binary
values from 00000000 to 11111111. Thus a pixel can take on a color from 256 x 256 x 256 or 16.7
million possible choices. This 24-bit format is commonly referred to as the true color representation, for
the difference between two colors that differ by one intensity level in one or more of the primaries is
virtually undetectable under normal viewing conditions. Hence a more precise representation involving
more bits is of little use in terms of perceived color accuracy.

A notable special case of direct coding is the representation of black-and-white (bilevel) and gray-scale
images, where the three primaries always have the same value and hence need not be coded separately. A
black-and-white image requires only one bit per pixel, with bit value 0 representing black and 1
representing white. A gray-scale image is typically coded with 8 bits per pixel to allow a total of 256
intensity or gray levels.

Although this direct coding method features simplicity and has supported a variety of applications, we
can see a relatively high demand for storage space when it comes to the 24-bit standard. For example, a
1000 x 1000 true color image would take up three million bytes. Furthermore, even if every pixel in that

CHAP. 2] IMAGE REPRESENTATION 9

image had a different color, there would only be one million colors in the image. In many applications the
number of colors that appear in any one particular image is much less. Therefore the 24-bit representation’s
ability to have 16.7 million different colors appear simultaneously in a single image seems to be somewhat
overkill.

2.3 LOCKUP TABLE

Image representation using a lookup table can be viewed as a compromise between our desire to have a
lower storage requirement and our need to support a reasonably sufficient number of simultaneous colors.
In this approach pixel values do not code colors directly. Instead, they are addresses or indices into a table
of color values. The color of a particular pixel is determined by the color value in the table entry that the
value of the pixel references.

Figure 2-4 shows a lookup table with 256 entries. The entries have addresses 0 through 255. Each
entry contains a 24-bit RGB color value. Pixel values are now 1-byte, or 8-bit, quantities. The color of a
pixel whose value is i, where 0 < i < 255, is determined by the color value in the table entry whose
address is i. This 24-bit 256-entry lookup table representation is often referred to as the 8-bit format. It
reduces the storage requirement of a 1000 x 1000 image to one million bytes plus 768 bytes for the color
values in the lookup table. It allows 256 simultaneous colors that are chosen from 16.7 million possible
colors.

0
1
2
(I > - g b
8-bit pixel value
255
24 bits
(8 bits per primary)

Fig. 2-4 A 24-bit 256-entry lookup table.

It is important to remember that, using the lookup table representation, an image is defined not only by
its pixel values but also by the color values in the corresponding lookup table. Those color values form a
color map for the image.

2.4 DISPLAY MONITOR

Among the numerous types of image presentation or output devices that convert digitally represented
images into visually perceivable pictures is the display or video monitor.

We first take a look at the working principle of a monochromatic display monitor, which consists
mainly of a cathode ray tube (CRT) along with related control circuits. The CRT is a vacuum glass tube
with the display screen at one end and connectors to the control circuits at the other (see Fig. 2-5). Coated
on the inside of the display screen is a special material, called phosphor, which emits light for a period of
time when hit by a beam of electrons. The color of the light and the time period vary from one type of

10 IMAGE REPRESENTATION [CHAP. 2

Control electrode
Focusing electrode
Horizontal deflection plates
Vertical deflection plates

Vertical retrace Phosphor-coated screen

Fig. 2-5 Anatomy of a monochromatic CRT.

phosphor to another. The light given off by the phosphor during exposure to the electron beam is known as
fluorescence, the continuing glow given off after the beam is removed is known as phosphorescence, and
the duration of phosphorescence is known as the phosphor’s persistence.

Opposite to the phosphor-coated screen is an electron gun that is heated to send out electrons. The
electrons are regulated by the control electrode and forced by the focusing electrode into a narrow beam
striking the phosphor coating at small spots. When this electron beam passes through the horizontal and
vertical deflection plates, it is bent or deflected by the electric fields between the plates. The horizontal
plates control the beam to scan from left to right and retrace from right to left. The vertical plates control
the beam to go from the first scan line at the top to the last scan line at the bottom and retrace from the
bottom back to the top. These actions are synchronized by the control circuits so that the electron beam
strikes each and every pixel position in a scan line by scan line fashion. As an alternative to this
electrostatic deflection method, some CRTs use magnetic deflection coils mounted on the outside of the
glass envelope to bend the electron beam with magnetic fields.

The intensity of the light emitted by the phosphor coating is a function of the intensity of the electron
beam. The control circuits shut off the electron beam during horizontal and vertical retraces. The intensity
of the beam at a particular pixel position is determined by the intensity value of the corresponding pixel in
the image being displayed.

The image being displayed is stored in a dedicated system memory area that is often referred to as the
frame buffer or refresh buffer. The control circuits associated with the frame buffer generate proper video
signals for the display monitor. The frequency at which the content of the frame buffer is sent to the display
monitor is called the refreshing rate, which is typically 60 times or frames per second (60 Hz) or higher. A
determining factor here is the need to avoid flicker, which occurs at lower refreshing rates when our visual
system is unable to integrate the light impulses from the phosphor dots into a steady picture. The
persistence of the monitor’s phosphor, on the other hand, needs to be long enough for a frame to remain
visible but short enough for it to fade before the next frame is displayed.

Some monitors use a technique called interlacing to “double” their refreshing rate. In this case only
half of the scan lines in a frame is refreshed at a time, first the odd numbered lines, then the even numbered
lines. Thus the screen is refreshed from top to bottom in half the time it would have taken to sweep across
all the scan lines. Although this approach does not really increase the rate at which the entire screen is
refreshed, it is quite effective in reducing flicker.

