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Editorial Introduction

Since their inception in 1990, the FOGA (Foundations of Genetic Algorithms)
workshops have been one of the principal reference sources for theoretical devel-
opments in evolutionary computation (EC) and, in particular, genetic algorithms
(GAs). The ninth such workshop, FOGA IX, was held at the Instituto de Cien-
cias Nucleares of the Universidad Nacional Auténoma de México, Mexico City
during January 8-11, 2007.

One of the main reasons the FOGA series of conferences has had a large
impact in EC has been its distinct profile as the only conference dedicated to
theoretical issues of a “foundational” nature — both conceptual and technical. In
this FOGA conference, and in keeping with this tradition, special attention was
paid to the biological foundations of EC. The essential mathematical structure
behind many evolutionary algorithms is the one familiar from population genet-
ics, whose basic elements have been around now for at least 70 years. The last
20 years or so, however, have witnessed huge changes in our understanding of
how genomes and other genetic structures work due to a plethora of new exper-
imental techniques and results. How does this new phenomenology change our
understanding of what genetic systems do and how they do it? And how can we
design “better” ones?

In this spirit, the first 2 days of the conference consisted of organized discus-
sions built around sets of lectures given by two world authorities on the “old”
biology and the “new” biology — Reinhard Burger (University of Vienna) and
Jim Shapiro (University of Chicago). The motivation behind this was that by
a careful presentation of the main ideas, a useful transfer of knowledge of the
latest developments and understanding of genetic dynamics in biology would be
fruitful for the EC community in better understanding and designing artificial
genetic systems. In particular the following questions were addressed:

— How do real genetic systems work?

— Why do they work that way?

— From this, what can we learn in order to design “better” artificial genetic
systems?

One of the most important conclusions from this confrontation between the
old and the new, was that the genotype — phenotype map and the huge variety
of complex ways by which genomes can interchange and mix genetic material
are not represented adequately in the standard “selection on a fixed fitness land-
scape, mutation and homologous recombination” picture so dominant in EC
and, particularly, GAs. Secondly, it became clear that the canonical picture of
population genetics was not an appropriate framework for considering “macro-
evolution” over long time scales, where the restructuring of genomes can be
enormous. Both these facts potentially pose great challenges for EC. For in-
stance, under what circumstances are all the diverse exchange and restructuring
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mechanisms for genomes useful in an EC setting? It is hard to imagine that
optimizing the 3,456-city Travelling Salesman problem needs such sophisticated
apparatus. Such a limited combinatorial optimization context is probably much
more akin to the evolution of specific phenotypic characteristics, as treated in
standard population genetics. No doubt that is one of the main reasons for the
success of GAs in combinatorial optimization. However, it is not clear if such a
paradigm is adequate for producing a more intelligent robot.

To understand then why biology uses certain representations and operators, it
is necessary to understand what a biological system has to “do” when compared
with EC systems. Surviving in an uncertain, time-dependent environment is
surely an infinitely more complex task than finding a set of allele values that
represent an optimal solution to a combinatorial optimization problem. In this
sense, one may wonder if there are any biological systems that are at least similar
to typical problems faced in EC. Peter Stadler presented probably one of the
closest analogies — evolution of macromolecules in the context of an RNA world
— where the fitness function for a particular RNA configuration is its replication
rate. However, such simple chemical evolution seems far removed from the macro-
evolution of entire organisms. Hopefully, some of the fruits of this more intense
examination of the relationship between biological evolution and EC will appear
in the next FOGA.

The second two days of the conference were of a more standard FOGA format
with contributed talks and ample time for discussion between them. For this
workshop there were 22 submissions which were each sent in a double-blind
review to three referees. Twelve high quality submissions that cover a wide range
of theoretical topics were eventually accepted after two more rounds of revisions
and are presented in this volume.

We would like to thank our co-organizers, Peter Stadler and Darrell Whitley,
for their efforts and input. Katya Rodriguez formed part of the Local Organizing
Committee and played an important role in making the conference run smoothly,
as did Trinidad Ramirez and various student helpers. Thanks go to the Instituto
de Ciencias Nucleares for providing its facilities and to the Macroproyecto Tec-
nologias para la Universidad de la Informacién y de la Computacién for financial
and technical support.

April 2007 Christopher R. Stephens
Marc Toussaint
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Inbreeding Properties of Geometric Crossover
and Non-geometric Recombinations

Alberto Moraglio and Riccardo Poli

Department of Computer Science, University of Essex, UK
{amoragn,rpoli}@essex.ac.uk

Abstract. Geometric crossover is a representation-independent general-
ization of traditional crossover for binary strings. It is defined in a simple
geometric way by using the distance associated with the search space.
Many interesting recombination operators for the most frequently used
representations are geometric crossovers under some suitable distance.
Showing that a given recombination operator is a geometric crossover
requires finding a distance for which offspring are in the metric segment
between parents. However, proving that a recombination operator is not
a geometric crossover requires excluding that one such distance exists.
It is, therefore, very difficult to draw a clear-cut line between geometric
crossovers and non-geometric crossovers. In this paper we develop some
theoretical tools to solve this problem and we prove that some well-known
operators are not geometric. Finally, we discuss the implications of these
results.

1 Introduction

A fitness landscape [23] can be visualised as the plot of a function resembling a
geographic landscape, when the problem representation is a real vector. When
dealing with binary strings and other more complicated combinatorial objects,
e.g., permutations, however, the fitness landscape is better represented as a
height function over the nodes of a simple graph [19], where nodes represent
locations (solutions), and edges represent the relation of direct neighbourhood
between solutions.

An abstraction of the notion of landscape encompassing all the previous cases
is possible. The solution space is seen as a metric space and the landscape as a
height function over the metric space [1]. A metric space is a set endowed with
a notion of distance between elements fulfilling few axioms [3]. Specific spaces
have specific distances that fulfil the metric axioms. The ordinary notion of dis-
tance associated with real vectors is the Euclidean distance, though there are
other options, e.g., Minkowski distances. The distance associated to combinato-
rial objects is normally the length of the shortest path between two nodes in the
associated neighbourhood graph [4]. For binary strings, this corresponds to the
Hamming distance.

In general, there may be more than one neighbourhood graph associated to
the same representation, simply because there can be more than one meaningful

C.R. Stephens et al. (Eds.): FOGA 2007, LNCS 4436, pp. 1-14, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 A. Moraglio and R. Poli

notion of syntactic similarity applicable to that representation [10]. For example,
in the case of permutations, the adjacent element swap distance and the block
reversal distance are equally natural notions of distance. Different notions of
similarity are possible because the same permutation (genotype) can be used to
represent different types of solutions (phenotypes). For example, permutations
can represent solutions of a problem where relative order is important. However,
they can also be used to represent tours, where the adjacency relationship among
elements is what matters [21].

The notion of fitness landscape is useful if the search operators employed
are connected or matched with the landscape: the stronger the connection the
more landscape properties mirror search properties. Therefore, the landscape
can be seen as a function of the search operator employed [5]. Whereas mutation
is intuitively associated with the neighbourhood structure of the search space,
crossover stretches the notion of landscape leading to search spaces defined over
complicated topological structures [5].

Geometric crossover and geometric mutation [9] are representation-
independent search operators that generalise by abstraction many pre-existing
search operators for the main representations used in EAs, such as binary strings,
real vectors, permutations and syntactic trees. They are defined in geometric
terms using the notions of line segment and ball. These notions and the cor-
responding genetic operators are well-defined once a notion of distance in the
search space is defined. This way of defining search operators as function of the
search space is the opposite to the standard approach in which the search space
is seen as a function of the search operators employed. Our new point of view
greatly simplifies the relationship between search operators and fitness landscape
and allows different search operators to share the same search space.

The reminder of this paper is organized as follows. In section 2, we introduce
the geometric framework. In section 3, we show that the definition of geometric
crossover can be cast in two equivalent, but conceptually very different, forms:
functional and existential. When proving geometricity the existential form is the
relevant one. We use this form also to show why proving non-geometricity of
an operator looks impossible. In section 4, we develop some general tools to
prove non-geometricity of recombination operators. In section 5, we prove that
three recombination operators for vectors of reals, permutations and syntactic
trees representations are not geometric. Importantly this implies that there are
two non-empty representation-independent classes of recombination operators:
geometric crossovers and non-geometric crossovers. In section 6, we draw some
conclusions and present future work.

2 Geometric Framework

2.1 Geometric Preliminaries

In the following we give necessary preliminary geometric definitions and extend
those introduced in [9]. For more details on these definitions see [4].
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The terms distance and metric denote any real valued function that conforms
to the axioms of identity, symmetry and triangular inequality. A simple con-
nected graph is naturally associated to a metric space via its path metric: the
distance between two nodes in the graph is the length of a shortest path between
the nodes. Distances arising from graphs via their path metric are called graphic
distances. Similarly, an edge-weighted graph with strictly positive weights is nat-
urally associated to a metric space via a weighted path metric.

In a metric space (S,d) a closed ball is a set of the form Bgy(z;r) = {y €
Sld(z,y) < r} where 2 € S and r is a positive real number called the radius of
the ball. A line segment (or closed interval) is a set of the form [z;y]ls = {2z €
S|d(x,z) +d(z,y) = d(x,y)} where z,y € S are called extremes of the segment.
Metric ball and metric segment generalize the familiar notions of ball and seg-
ment in the Euclidean space to any metric space through distance redefinition.
These generalized objects look quite different under different metrics. Notice
that the notions of metric segment and shortest path connecting its extremes
(geodesic) do not coincide as it happens in the specific case of an Euclidean space.
In general, there may be more than one geodesic connecting two extremes; the
metric segment is the union of all geodesics.

We assign a structure to the solution set S by endowing it with a notion
of distance d. M = (5,d) is therefore a solution space (or search space) and
L = (M, g) is the corresponding fitness landscape where g : S — R is the fitness
function. Notice that in principle d could be arbitrary and need not have any
particular connection or affinity with the search problem at hand.

2.2 Geometric Crossover Definition

The following definitions are representation-independent and, therefore,
crossover is well-defined for any representation. Being based on the notion of
metric segment, crossover is only function of the metric d associated with the
search space.

A recombination operator OP takes parents p;, p2 and produces one offspring
¢ according to a given conditional probability distribution:

Pr{OP(p1,p2) = ¢} = Pr{OP = c|Py = p1, P> = p2} = fop(c|p1,p2)

Definition 1 (Image set). The image set Im[OP(p1,p2)] of a genetic operator
OP is the set of all possible offspring produced by OP with non-zero probability
when parents are py and po.

Definition 2 (Geometric crossover). A recombination operator CX is a geo-
metric crossover under the metric d if all offspring are in the segment between
its parents: Vp1,p2 € S : Im[CX (p1,p2)] C [p1,p2]a

Definition 3 (Uniform geometric crossover). The uniform geometric crossover
UX under d is a geometric crossover under d where all z laying between parents
x and y have the same probability of being the offspring:
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d(z € [z;9]a)
|l ylal
ImUX (z,y)] = {z € S|fux(z|z,y) > 0} = [z;y]a

where § is a function that returns 1 if the argument is true, 0 otherwise.

Ve,y € S: fux(zlz,y) =

A number of general properties for geometric crossover and mutation have been
derived in [9].

2.3 Notable Geometric Crossovers

For vectors of reals, various types of blend or line crossovers, box recombinations,
and discrete recombinations are geometric crossovers [9]. For binary and mul-
tary strings (fixed-length strings based on a n symbols alphabet), all mask-based
crossovers (one point, two points, n-points, uniform) are geometric crossovers
[9,13]. For permutations, PMX, Cycle crossover, merge crossover and others
are geometric crossovers [10,11]. For Syntactic trees, the family of Homologous
crossovers (one-point, uniform crossover) are geometric crossovers [12]. Recom-
binations for other more complicated representations such as variable length
sequences, graphs, permutations with repetitions, circular permutations, sets,
multisets partitions are geometric crossovers [15,9,10,14].

2.4 Geometric Crossover Landscape

Since our geometric operators are representation-independent, one might wonder
as to the usefulness of the notion of geometricity and geometric crossovers in
practical applications. To see this, it is important to understand the difference
between problem and landscape.

Geometric operators are defined as functions of the distance associated to
the search space. However, the search space does not come with the problem
itself. The problem consists only of a fitness function to optimize, that defines
what a solution is and how to evaluate it, but it does not give any structure over
the solution set. The act of putting a structure over the solution set is part of the
search algorithm design and it is a designer’s choice. A fitness landscape is the
fitness function plus a structure over the solution space. So, for each problem,
there is one fitness function but as many fitness landscapes as the number of
possible different structures over the solution set. In principle, the designer could
choose the structure to assign to the solution set completely independently from
the problem at hand. However, because the search operators are defined over
such a structure, doing so would make them decoupled from the problem, hence
turning the search into something very close to random search.

In order to avoid this one can exploit problem knowledge in the search. This
can be achieved by carefully designing the connectivity structure of the fitness
landscape. That is, the landscape can be seen as a knowledge interface between
algorithm and problem [10]. In [10] we discussed three heuristics to design the
connectivity of the landscape in such a way to aid the evolutionary search per-
formed by geometric crossover. These are: i) pick a crossover associated to a
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good mutation, ii) build a crossover using a neighbourhood structure based on
the small-move/small-fitness-change principle, and iii) build a crossover using a
distance that is relevant for the solution interpretation.

Once the connectivity of the landscape is correctly designed, problem knowl-
edge can be exploited by search operators to perform better than random search,
even if the search operators are problem-independent (as in the case of geometric
crossover and mutation). Indeed, by using these heuristics, we have designed very
effective geometric crossovers for N-queens problem [11], TSP [11] [10], Job Shop
Scheduling [11], Protein Motifs discovery [20], Graph Partitioning [6], Sudoku
[16] and Finite State Machines [7].

3 Interpretations of the Definition of Geometric
Crossover

In section 2, we have defined geometric crossover as function of the distance d
of the search space. In this section we take a closer look at the meaning of this
definition when the distance d is not known. We identify three fundamentally
different interpretations of the definition of geometric crossover. Interestingly
it will become evident that there is an inherent element of self-reference in the
definition. We show that proving that a recombination operator is non-geometric
may be impossible.

3.1 Functional Interpretation

Geometric crossover is function of a generic distance. If one considers a spe-
cific distance one can obtain a specific geometric crossover for that distance
by functional application of the definition of geometric crossover to this dis-
tance. This approach is particularly useful when the specific distance is firmly
rooted in a solution representation (e.g., edit distances). In this case, in fact,
the specification of the definition of geometric crossover to the distance acts as a
formal recipe that indicates how to manipulate the syntax of the representation
to produce offspring from parents. This is a general and powerful way to get
new geometric crossover for any type of solution representation. For example,
given the Hamming distance on binary string by functional application of the
definition of geometric crossover we obtain the family of mask-based crossover
for binary strings. In particular, by functional application of the definition of
uniform geometric crossover one obtains the traditional uniform crossover for
binary strings.

3.2 Abstract Interpretation

The second use of the definition of geometric crossover does not require to specify
any distance. In fact we do apply the definition of geometric crossover to a
generic distance. Since the distance is a metric that is a mathematical object
defined axiomatically, the definition of geometric crossover becomes an axiomatic
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object as well. This way of looking at the definition of geometric crossover is
particularly useful when one is interested in deriving general theoretical results
that hold for geometric crossover under any specific metric. We will use this
abstract interpretation in section 4 to prove the inbreeding properties that are
common to all geometric crossovers.

3.3 Existential Interpretation

The third way of looking at the definition of geometric crossover becomes appar-
ent when the distance d is not known and we want to find it. This happens when
we want to know whether a recombination operator RX, defined operationally as
some syntactic manipulation on a specific representation, is a geometric crossover
and for what distance. This question hides an element of self-reference of the def-
inition of geometric crossover. In fact what we are actually asking is: given that
the geometric crossover is defined over the metric space it induces by manipu-
lating the candidate solutions, what is such a metric space for RX if any?

The self-reference arises from the fact that the definition of geometric crossover
applies at two distinct levels at the same time: (a) at a representation level,
as a manipulation of candidate solutions, and (b) at a geometric level, on the
underlying metric space based on a geometric relation between points. This
highlights the inherent duality between these two worlds: they are based on the
same search space seen from opposite viewpoints, from the representation side
and from the metric side.

Self-referential statements can lead to paradoxes. Since the relation between
geometric crossover and search space is what ultimately gives it all its advan-
tages, it is of fundamental importance to make sure that this relation sits on a
firm ground. So, it is important to show that the definition of geometric crossover
does not lead to any paradox. We show in the following that the element of self-
reference can be removed and the definition of geometric crossover can be cast
in existential terms making it paradox-free.

A non-functional definition of geometric crossover is the following: a recom-
bination operator RX is a geometric crossover if the induced search space is
a metric space on which RX can be defined as geometric crossover using the
functional definition of geometric crossover. This is a self-referential definition.
If a recombination operator does not induce any metric space on which it can
be defined as geometric crossover, then it is a non-geometric crossover.

We can remove the element of self-reference from the previous definition and
cast it in an existential form: a recombination RX is a geometric crossover if
for any choice of the parents all the offspring are in the metric segment between
them for some metric.

The existential definition is equivalent to the self-referential definition be-
cause if such a metric exists the operator RX can be defined as geometric
crossover on such a space. On the other hand, if an operator is defined on a
metric space as geometric crossover in a functional form, such a space exists by
hypothesis and offspring are in the segment between parents under this metric by
definition.
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3.4 Geometric Crossover Classes

The functional definition of geometric crossover induces a natural existential
classification of all recombination operators into two classes of operators:

— geometric crossover class G: a recombination OP belongs to this class if there
exists at least a distance d under which such a recombination is geometric:
OP € G <= 3d:Vp1.p2 € S: Im[OP(p1,p2)] C [p1,p2]a-

— non-geometric crossover class G: a recombination OP belongs to G if there is
no distance d under which such a recombination is geometric: OP € G <=
Vd : 3p1,p2 € S : Im[OP(p1,p2)] \ [p1,p2]a # 0.

For this classification to be meaningful we need these two classes to be non-
empty. In previous work we proved that a number of recombination operators
are geometric crossovers so G is not empty. What about G? To prove that this
class is not empty we have to prove that at least one recombination operator is
non-geometric. However, as we illustrate below this is not easy to do.

Let us first illustrate how one can prove that a recombination operator RX
is in G. We will use the self-referential definition of geometric crossover. The
procedure is the following: guess a candidate distance d, then prove that all
offspring of all possible pairs of parents are in the metric segment associated
with d. If this is true then the recombination RX is geometric crossover under
the distance d because the operator RX can be defined as a geometric crossover
on this space. If the distribution of the offspring in the metric segments under
d is uniform, RX is the uniform geometric crossover for the metric d because
the operator RX can be defined as the (unique) geometric uniform crossover
on this space. If one finds that some offspring are not in the metric segment
between parents under the initially guessed distance d then the operator RX
cannot be defined as geometric crossover over this space. However, this does not
imply RX € G because there may exist another metric d’ that fits RX and
makes it definable as a geometric crossover on d’. So, one has to guess a new
candidate distance for RX and start all over again until a suitable distance is
found.

Although we developed some heuristics for the selection of a candidate dis-
tance, in general proving that a recombination operator is geometric may be
quite hard (see for example [12] where we considered homologous crossover for
GP trees). Nonetheless, the approach works and, in previous work, we proved
that a number of recombination operators for the most frequently used repre-
sentations are geometric crossover under suitable distances.

It is evident, however, that the procedure just described cannot be used to
prove that a given recombination operator RX is non-geometric. This is because
we would need to test and exclude all possible distances, which are infinitely
many, before being certain that RX is not geometric. Clearly, this is not possible.

In the next section we build some theoretical tools based on the abstract
interpretation of the definition of geometric crossover to prove non-geometricity
in a more straightforward way.



