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PREFACE

This book is a complete and self-contained introduction into computational
fluid dynamics and heat transfer, commonly abbreviated as CFD. The text
addresses this subject on the very basic level suitable for a first course of
CFD taught to beginning graduate or senior undergraduate students. No
prior knowledge of CFD is assumed on the part of the reader.

To appreciate the purpose and flavor of the book, we have to consider
the major shift that currently occurs in the scope and character of CFD
applications. From being a primarily research discipline just 20 years
ago, CFD has transformed into a tool of everyday engineering practice. It
would be safe to say that, worldwide, tens of thousands of engineers are
directly employed to run CFD computations at companies or consulting
firms. Many others encounter CFD at some stages of their work.

Unlike solution of research problems, CFD analysis in industrial
environment does not, typically, involve development of new algorithms.
Instead, one of the general purpose codes is used. Such codes, nowadays,
tend to provide a fusion of all the necessary tools: equation solver,
mesh generator, turbulence and multiphysics models, and modules for
post-processing and parallel computations. Two key factors contribute
to the success in applying such codes: (1) Understanding of physical and
engineering aspects of the analyzed process; and (2) Ability to conduct
the CFD analysis properly, in a way that guarantees an accurate and
efficient solution.

I recognized the need for a new textbook when I was teaching the
graduate and senior undergraduate courses in CFD at the Department
of Mechanical Engineering of the University of Michigan—Dearborn.
The majority of our graduate students are either working engineers or
researchers in applied engineering fields. The undergraduate students
tend to pursue industrial employment after graduation. Potential future
exposure of our students to CFD is often limited to the use of general
purpose codes. To respond to their needs, the instruction is focused on
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xvi PREFACE

two areas: the fundamentals of the method (what we call the essential
CFD) and the correct way of conducting the analysis using readily
available software. A survey of the existing texts on CFD, although
revealing many excellent research-oriented texts, does not reveal a book
that fully corresponds to this concept.

A comment is in order regarding the bias of the text. All CFD texts
are, to some degree, biased in correspondence to the chosen audience
and research interests of the authors. More weight is given to some of
the methods (finite difference, finite element, spectral, etc.) and to some
of the fields of application (heat transfer, incompressible fluid dynamics,
or gas dynamics). The choices made in this book reflect the assumption
of mechanical, chemical, and civil engineering students as the target
audience rather than aerospace engineering students, and the intended
use of the text for applied CFD instruction. The focus is on the finite
difference and finite volume methods. The finite element and spectral
techniques are introduced only briefly. Also, somewhat more attention is
given to numerical methods for incompressible fluid dynamics and heat
transfer than for compressible flows.

The text can be used in combination with exercises in practical CFD
analysis. As an example, our course at the University of Michigan—
Dearborn is divided into two parts. The first part (about 60 percent of
the total course time) is reserved for classroom instruction of the basic
methods of CFD. It covers Part I, “Fundamentals,” and Part II, “Methods.”
It includes a simple programming project (solving a one-dimensional heat
or wave equation). The remainder of the course includes exercises with
a CFD software and parallel discussion of the topics of Part III, “Art of
CFD” dealing with turbulence modeling, computational grids, and rules of
good CFD practice. This part is conducted in a computer laboratory and
includes a project in which students perform a full-scale CFD analysis.

Acknowledgments: It is a pleasure to record my gratitude to many
people who made writing this book possible. This includes generations of
students at the University of Michigan—Dearborn, who suffered through
the first iterations of the text and provided priceless feedback. I wish
to thank friends and colleagues who read the manuscript and gave their
insightful and constructive suggestions: Thomas Boeck, Dmitry Krasnov,
Svetlana Poroseva, Tariq Shamim, Olga Shishkina, Sergey Smolentsev,
Axelle Viré, and Anatoly Vorobev. The first serious attempt to write the
book was undertaken during a sabbatical stay at the Ilmenau University
of Technology. I appreciate the hospitality of Andre Thess and support by
the German Science Foundation (DFG) that made this possible. Finally,
and above all, I would like to thank my wife, Elena, and my children,
Kirill and Sophia, for their understanding and support during the many
hours it took to complete this book.
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WHAT IS CFD?

1.1 INTRODUCTION

We start with a definition:

CFD (computational fluid dynamics) is a set of numerical methods applied to obtain
approximate solutions of problems of fluid dynamics and heat transfer.

According to this definition, CFD is not a science by itself but a way to
apply the methods of one discipline (numerical analysis) to another (heat
and mass transfer). We will deal with details later. Right now, a brief
discussion is in order of why exactly we need CFD.

A distinctive feature of the science of fluid flow and heat and mass
transfer is the approach it takes toward description of physical processes.
Instead of bulk properties, such as momentum or angular momentum of
a body in mechanics or total energy or entropy of a system in thermody-
namics, the analysis focuses on distributed properties. We try to determine
entire fields such as temperature 7 (x,7) velocity v(x, 1), density p(x,1),
etc.'" Even when an integral characteristic, such as the friction coefficient
or the net rate of heat transfer, is the ultimate goal of analysis, it is derived
from distributed fields.

The approach is very attractive by virtue of the level of details it pro-
vides. Evolution of the entire temperature distribution within a body can

'Throughout the book, we will use x = (x.y,z) for the vector of space coordinate and ¢
for time.



2 WHAT IS CFD?

be determined. Internal processes of a fluid flow such as motion, rotation,
and deformation of minuscule fluid particles can be taken into account.
Of course, the opportunities come at a price, most notably in the form of
dramatically increased complexity of the governing equations. Except for
a few strongly simplified models, the equations for distributed properties
are partial differential equations, often nonlinear.

As an example of complexity, let us consider a seemingly simple task of
mixing and dissolving sugar in a cup of hot coffee. An innocent question
of how long or how many rotations of a spoon would it take to completely
dissolve the sugar leads to a very complex physical problem that includes
a possibly turbulent two-phase (coffee and sugar particles) flow with a
chemical reaction (dissolving). Heat transfer (within the cup and between
the cup and surroundings) may also be of importance because temperature
affects the rate of the reaction. No simple solution of the problem exists.
Of course, we can rely on the experience acquired after repeating the
process daily (perhaps more than once) for many years. We can also
add a couple of extra, possibly unnecessary, stirs. If, however, the task
in question is more serious—for example, optimizing an oil refinery or
designing a new aircraft—relying on everyday experience or excessive
effort is not an option. We must find a way to understand and predict the
process.

Generally, we can distinguish three approaches to solving fluid flow
and heat transfer problems:

1. Theoretical approach—using governing equations to find analytical
solutions

2. Experimental approach—staging a carefully designed experiment
using a model of the real object

3. Numerical approach—using computational procedures to find a
solution

Let’s look at these approaches in more detail.

Theoretical approach. The approach has a crucial advantage of provid-
ing exact solutions. Among the disadvantages, the most important is that
analytical solutions are only possible for a very limited class of problems,
typically formulated in an artificial, idealized way. One example is the
Poiseuille solution for a flow in an infinitely long pipe (see Figure 1.1).
The steady-state laminar velocity profile is

,-2—R3d_p

U(r)= .
(r) 4 dx
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Figure 1.1 Laminar flow in an infinite pipe.

where U is the velocity, R is the pipe radius, dp/dx is the constant
pressure gradient that drives the flow, and p is the dynamic viscosity of the
fluid. On the one hand, the solution is, indeed, simple and gives insight into
the nature of flows in pipes and ducts, so its inclusion into all textbooks of
fluid dynamics is not surprising. On the other hand, the solution is correct
only if the pipe is infinitely long,” temperature is constant, and the fluid is
perfectly incompressible. Furthermore, even if we were able to build such
a pipe and find a useful application for it, the solution would be correct
only at Reynolds numbers Re = URp/ i (p is the density of the fluid) that
are below approximately 2,000. Above this limit, the flow would assume
fully three-dimensional and time-dependent turbulent form, for which no
analytical solution is possible.

It can also be noted that derivation of analytical solutions often requires
substantial mathematical skills, which are not among the strongest traits
of many modern engineers and scientists, especially if compared to the
situation of 30 or 40 years ago. Several reasons can be named for the dete-
rioration of such skills, one, no doubt, being development of computers
and numerical methods, including the CFD.

Experimental approach. Well-known examples are the wind tunnel
experiments, which help to design and optimize the external shapes of
airplanes (also of ships, buildings, and other objects). Another example
is illustrated in Figure 1.2. The main disadvantages of the experimen-
tal approach are the technical difficulty (sometimes it takes several years
before an experiment is set up and all technical problems are resolved)
and high cost.

Numerical (computational) approach. Here, again, we employ our abil-
ity to describe almost any fluid flow and heat transfer process as a solution
of a set of partial differential equations. An approximation to this solution
is found in the result of a computational procedure. This approach is not
problem-free, either. We will discuss the problems throughout the book.

’In practice, the solution is considered to be a good approximation for laminar flows in
pipes at sufficiently large distance (dependent on the Reynolds number but, at least few
tens of diameters) from the entrance.
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Figure 1.2 The experiment for studying thermal convection at the llmenau
University of Technology, Germany (courtesy of A. Thess). Turbulent convection
similar to the convection observed in the atmosphere of Earth or Sun is simulated
by air motion within a large barrel with thermally insulated walls and uniformly
heated bottom.

The computational approach, however, beats the analytical and experi-
mental methods in some very important aspects: universality, flexibility,
accuracy, and cost.

1.2 BRIEF HISTORY OF CFD

The history of CFD is a fascinating subject, which, unfortunately, we

can only touch in passing. The idea to calculate approximate solutions of
differential equations describing fluid flows and heat transfer is relatively
old. It is definitely older than computers themselves. Development of
numerical methods for solving ordinary and partial differential equations
started in the first half of the twentieth century. The computations at
that time required use of tables and dull mechanical work of dozens,
if not hundreds, of people. No wonder that only the most important
(primarily military-related) problems were addressed and only simple,
one-dimensional equations were solved.

Invention and subsequent fast development of computers (see
Figure 1.3) opened a wonderful possibility of performing millions—and
then millions of millions—of arithmetic operations in a matter of
seconds. This caused a rapid growth of the efforts to develop and apply
methods of numerical simulations. Again, military applications, such as
modeling shock waves from an explosion or a flow past a hypersonic



