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Introduction

A number of authors (see, e.g., Besicovitch [7], Knichal [32], Eggleston [23], [24],
Volkmann [44], [45], [47], [49] and Cigler [19]) have computed the Hausdorff dimensions
(h-dim) of sets of real numbers characterized by digit properties of their g-adic re-
presentations. A detailed comparison of the results of these papers shows the following
phenomenon: If the Hausdorff dimension of some non-denumerable union of sets Ma,

a € I, of the type under consideration as well as the Hausdorff dimensions of the in-
dividual sets Ma are known, possibly from different sources, then the relation

(SUP)  h-dim( U M ) = sup h-dim(M )
Qe 2 o€l o

holds, while this equality is, in general, only true for denumerable unions.

In the papers cited above each real number r € [0,1] is expressed by its g-adic ex-
pansion

S A
;
£y o (el, ey L e o o P (SRR

i=1 :

(fa)

for some fixed integer g > 2. The study of dimensions is not affected here by the fact
that this expansion is ambiguous for denumerably many r. Then the relative frequency
hn(r, J) by which the digit j occurs in the finite sequence (el, €5 s en) is in-
troduced. The sets under investigation are always of the type which can be described

in terms of the 1imit points of the sequence {(hn(r, Eh hn(r, I hn(r, 9_1))}n€N

of g-tuples in the Euclidean space R®. Volkmann [49] computed the Haudorff dimension
of the smallest sets which can be characterized in this fashion.

If we consider also the relative frequencies of blocks (jl, jZ’ S j]) of digits
within the sequence (el, €5s ...) simultaneously for all blocks of arbitrary tenath

1 then the 1imit points obtained by letting n tend to infinity may be identified with
special probability measures (li-measures), to be called distribution measures. Sets of
real numbers which may be characterized solely by means of distribution measures shall
be called saturated sets in the sequel.

Colebrook [20] computed the Hausdorff dimension of the smallest saturated sets. His
results also yield the relation (SUP) for saturated sets M whenever both sides of
the equation (SUP) are known.

In the present paper the relation (SUP) is proved for arbitrary saturated sets M
and arbitrary sets I of indices. Furthermore we shall replace Hausdorff dimension by
a more general Billingsley dimension with respect to a non-atomic, ergodic Markov
measure P over a sequence space with finite state space. The key for proving the



relation (SUP) lies in the representation of the Billingsley dimension as infimum of
certain p-P-dimensions which always satisfy the equation (SUP) trivially. This infimum
of the u-P-dimension shall be investigated in Chapter I within a general frame-work. It
shall be studied extensively as a dimension of its own right, to be called P-dimension.
In Chapter II we shall compute the Billingsley and Hausdorff dimensions of the smallest
saturated sets and establish the relation (SUP) for arbitrary saturated sets, with
applications in both directions.

At the beginning of Chapter I we shall state general remarks and conventions in § 1.A.
A summary of the ergodic theory of a sequence space with denumerable state space, to
the extent as it is needed in the present paper, will be given in § 1.B.

Billingsley [9] uses a fixed stochastic process in order to define his dimension. In

§ 2 this process shall be replaced by a dimension system. A dimension system consists
of a basic space X on which a seaguence of decompositions is defined in such a way that
each of them is a refinement of the preceding one. These decompositions, in turn,
generate a c-algebra on X. In a dimension system a p-P-dimension (u-P-dim(M)) is de-
fined for arbitrary subsets M of X for any given propability measure (W-measure) u

and any non-atomic W-measure P. The infimum of all u-P-dimensions of a set M, extended 3
over all Y-measures u, is then called the P-dimension of M, written P-dim(M), as
mentioned above. The basic properties of these concepts are stated. A number of theorems
which Billingsley [10,§ 21 has shown to hold for his dimension are also valid analog- |
ously for the P-dimension. In correspondence to the elementary nature of the definitions
a large part of the proofs is also elementary, and a first simple criterion for the
validity of the relation (SUP) for P-dimensions (Theorem 2.7) is obtained: If there
exists a W-measure p such that, for all set Ma’ the pu-P-dimension is equal to the P-
dimension, then the equation

(SUP) P-dim( U M ) = sup P-dim(M )
a€l ¢ qel *

is true.

A comparison between P-dimension and Billingsley dimension relative to P is given in

§ 3. The P-dimension of a set is never smaller than its Billingsley dimension. However,
if a dimension system satisfies a certain completeness condition which always holds

for sequence spaces with denumerable state space, then both dimensions coincide (Theo-
rem 3.3). Now it is possible to express the Hausdorff dimension as a P-dimension by
means of the theorem of Wegmann [51, Satz 2 1, thus reaching the original problem

(SUP) again. Even though one might, in the 1ight of this section, disregard the concept
of P-dimension in addition to Billinasley's dimension in many cases, it is neverthe-
Jess justified to maintain the former and to investicate it within general dimension
systems on account of the elementary approach to definitions and implied properties



which it provides.

In view of the criterion stated above concerning the validity of the relation (SUP)
for P-dimensions it is of interest to know W-measure which are "as small as possible"
or to know lower bounds for sufficiently large families of W-measures relative to the
partial ordering "less or equal by dimension" on the set of all W-measures (Def. 2.6)
introduced in § 2 already. For this purpose a quasimetric q on the set of all W-
measures over a dimension system is introduced (Def. 4.1) and investigated in § 4.A.
In addtion to results on the continuity of the p-P-dimension and the P-dimension with
respect to p and P it is in particular shown that the family of invariant Markov
measures of arbitrary order on a sequence space with finite state space is bounded
from below by dimension (Theorem 4.5). This shall be of particular interest in Chapter
I1 for estabiishing the relation (SUP) for saturated sets. In § 4.B we shall consider
Markov kernels in order to construct lower bounds for families of W-measures in a more
~general (and partially more elegant) fashion.

§ 5 is not needed for Chapter II. In this section we define the P-dimension of W-
measures in analogy to Kinney/Pitcher [31] who introduced a Hausdorff dimension of
W-measures on the interval [0,1]1. By means of §§ 2 and 4 we obtain quickly some
interesting connections such as a representation of a P-dimension of invariant W-
measures in terms of the P-dimension of ergodic UW-measures (Theorem 5.5), which augments
known representation theorems for invariant W-measures (compare, e.g., Lemma 1.2) as far
as their P-dimension is concerned.

Then Chapter II deals with the Billingsley dimension (relative to a non-atomic, ergodic
Markov measure P) of the saturated sets of a sequence space with finite state space.

As mentioned already, Billingsley dimension may be written as P-dimension in this con-
text such that all the tools of Chapter I are applicable.

First we deal in § 6.A with the distribution measures of a single point of the sequence
space in order to be able to define exactly the saturated sets and the smallest satura-
ted sets. Varjous preliminary arguments are given in § 6.B and § 6.C after which we
discuss in § 6.D the problem how and to what extent the Markov measure P. assumed to be
non-atomic and ergodic, may be replaced by a more general l-measure PXi§ 6.E lSts
those functions and some of their properties which occur in the following sections.

In § 7 we first give an upper bound for the Billingsley dimension of the smallest
saturated sets (Theorem 7.1). In view of the aim of establishing the relation (SUP)
for saturated sets an essential role is played by a certain uO—P-dimension which

serves as an upper bound.

In order to provide a lower bound for the Hausdorff dimension of the smallest saturated
set, Colebrook [20] constructs a certain subset of it which consists of all numbers



whose g-adic expansion is obtained by juxtaposition of certain specified digit blocks
of growing lengths. But only those numbers contribute something to the P-dimension of
the subset so constructed for which all transitions from one specified block to the

next have positive P-probabilities, and thus Colebrook's procedure can not be applied

here.

Therefore we construct a suitable W-measure in order to obtain a lower bound for the
Billingsley dimension of the smallest saturated sets (Theorem 7.2), a procedure which
is typical for the construction of Billingsley dimensions. But the W-measure which we
introduce has an additional property which shall permit us in § 9.C and § 9.D to study
sets characterized by the absolute non-occurrence of digits or digit blocks in addition |
to saturated sets. Finally we are able to compute the Billingsley dimensions of the
smallest saturated sets. Now an infimum principle appears as in Colebrook [20] , but
in Colebrook's paper the Hausdorff dimension of a smallest saturated set equals, up
to the factor In g, the infimum of the entropies of the distribution measures which
describe the set, whereas in the study of a more general P-dimension the entropy has
to be modified by a factor which depends on the distribution measure and on P. At the
end of § 7 we show that even the smallest saturated sets permit non-denumerable de-
compositions into subsets with the same dimension.

In § 8 we determine the Billingsley dimension of an arbitrary saturated set which
turns out to be equal to the supremum of the Billingsley dimensions of those smallest
saturated sets which it contains. This implies immediately the relation (SUP) for the
saturated sets. The results of § 3 enable us to obtain the corresponding propositions
on the Hausdorff dimension of saturated subsets of the interval [0,1] with respect to
g-adic expansions (Theorems 8.1 and 8.2). Thus the "maximum entropy principle" as
observed by Billingsley [ 91 turns out to be a general "supremum infimum principle"
of the Billingsley dimension of saturated sets. Furthermore this section contains
examples illustrating these theorems and results on the continuity of the P-dimension
with respect to the saturated set under consideration.

In § 9 we use the results at our disposal in order to describe the Billingsley or
Hausdorff dimension of sets of certain types. In § 9.A we group the points of the
sequence space together into saturated sets whose distribution measures are contained
in, or contain a given set of W-measures or at least one W-measure from it. The sets
studied in § 9.B are obtained by considering only relative frequencies of the digit
blocks of some given length. By means of the results so obtained we can prove those
of Besicovitch [7], Knichal [32], Eggleston [23] and [24], Volkmann [44], [45], [47],
[49], Cigler [19] and Billingsley [9] and [10] as far as they are concerned with
Hausdorff or Billingsley dimensions of saturated sets.

In § 9.C we consider, in addition to describing sets by distribution measures, the




stipulation that finitely many blocks of digits do not occur in the sequence repre-
senting the points of the sequence space. This leads to intersections of saturated

sets with Cantor-type sets. Here we extend the relation (SUP) to a class of subsets

of the sequence space of which the saturated sets form a proper subclass. This enables
us also to determine the Hausdorff and Billingsley dimension, respectively, of the sets
studied by Volkmann [46] and [48] and by Steinfeld/Wegmann [43] by the approach taken
here. Finally we determine in § 9.D the Billingsley dimension of sets which are charac-

terized by the non-occurrence of denumerably many digit blocks.

As a whole, Chapter II and § 9, in particular, furnish results and methods by means

of which the computation of the Billingsley or Hausdorff dimension of a set may be
reduced in many cases to an extremal value problem with constraints which in turn may
be solved, e.g., by standard methods of calculus. In this context it should be mentioned
that the concepts of upper and lower noise ("bruit supérieur", "bruit inferieur") of

a real number, as introduced by Rauzy [38] for the description of deterministic numbers,
provide further examples of saturated sets. By our methods we obtain immediately a
theorem of Bernay f6] according to which the set of deterministic numbers has Haus-

dorff dimension zero.

More general expansions of real numbers (see Galambos [26])do not always lead to satu-
rated sets for which the methods of Chapter II are directly applicable. Thus the results
of Schweiger [40] and Schweiger/Stradner [41], investigating digit extensions of more
general arithmetic transformations, are only covered in special cases by these methods.
This is true, in particular, in the case of $-adic digit expansions for a real number

$ > 1 with a terminating $-adic representation of the number one inasmuch as, according
to Cigler [ 18], the digits, considered as random variables on [0,1], form an ergodic

Markov chain then.

With some additional effort Chapter II could be modified in order to cover Cantor series
as studied by Peyriére [36]. The continued fraction algorithm, however, is too difficult
to be treated by a modification of Chapter II. Nevertheless, one might expect in view of
the results of Biliingsley/Henningsen [13] that a theory of saturated sets should be
true which is largely analogous to Chapter II. Within the scope of the present paper no
attempt has been made to cover this subject. Many authors (see, e.g., R.C. Baker [2 ],
Beardon [4]1, Beyer [81, Boyd [14]1, Hawkes [30], Nagasaka [34], Pollington [37] and
others) have determined Hausdorff dimensions of sets which can not be interpreted as
saturated sets. For these problems Chapter II is of little use. Perhaps parts of
Chapter I might be useful in order to obtain simplified computations of the dimensions
under consideration. But from the point of view taken in Chapter I saturated sets are
only an example of a family of sets with the property (SUP). The paper by Baker and
Schmidt [1] shows that families of sets with the property (SUP) may be obtained



by means of criteria for the approximation of real numbers by algebraic numbers.

It remains to mention that the concept of P-dimension by itself is not sufficient in
order to study Hausdorff measures (for the definition see Rogers [39], and for examples,
see Hatano [29] and Steinfeld/Wegmann [43]). These measures may be obtained by several
approaches such as metrizing the given space (see Wegmann [50]) or using the method of
Sion/Willmott [42].

We should mention two directions in which the concept of P-dimension may be generalized.
For one, u-P-dimensions may be defined not only for li-measures u but also for more
general valuations u of the cylinders which form the elements of the decompositions
(compare Remark 3.2.4). In this way, for each family of valuations u a concept of
dimension is obtained as infimum of the corresponding p-P-dimensions. Furthermore we
might, instead of defining the dimension system by means of a sequence of decompositions
of a given space, restrict ourselves to a subsequence, thus obtaining a new definition
of dimension. This would be analogous to a generalization of the definition of Haus-
dorff dimension as studied by Buck [15] and [16]. We shall not go into these two kinds
of generalizations, neither shall we investigate the problem under which conditions a
dimension so modified coincides with the original one.

I wish to express my sincere thanks to my teacher and Ph.D. supervisor, Professor Dr.
Bodo Volkmann, who suggested the subject of the present thesis and supported my work
with patience. He also initiated the necessary steps for the publication of this paper
as part of the Springer Lecture Notes and provided his help in the preparation of the

English version of the text.

My thanks also go to my friend, Dr. Konrad Sandau, for frequent discussions from which
many ideas of this paper emerged.

I am indebted to the Springer Publishing Company for having accepted this paper for the
"l ecture Notes in Mathematics". Last not least, I owe thanks to Mrs. Elisabeth Schlum-
berger for the time consuming and strenuous effort of typing the manuscript with extreme

care.

Stuttgart, July 1981 Helmut Cajar




CHAPTER I

P-dimension

§ 1. Preliminaries, notation, terminology

1.A Generalities. Definitions, theorems, lemmas, remarks and examples are numbered

consecutively in each section. The number of a theorem is also designed to its corol-
laries. Theorems which we quote from literature are not numbered. No originality is
claimed for the content of lemmas even when a proof is given. The end of each proof
is marked by the symbol //. Furthermore, the following symbols are used:

P for the empty set,

N for the set of natural numbers,

NO =N u {0},

R for the set of real numbers,

R' for the set of positive real numbers,

R; for the set of non-negative real numbers,

A for Lebesgue measure on R,

N for any subset of N,

I for any (not necessarily denumerable) set of indices,
|A| for the cardinality of a denumerable set A,
XA for the characteristic function of a set A.

For brevity, a sequence {an}neN is also denoted by {an}n or simply by {an}. A denumer-
able set is either finite or countably infinite. Expressions like "inf" and "sup" are
permitted to assume values +~ and -». Unless stated otherwise, sup @ = 0 and inf @ =
+o. The symbols +» and -» are treated by the ordinary rules of the extended real num-
ber system. Furthermore, we use the following conventions:

In0 = -o, 0+ 1n0 =0,

Tnc
e

1,2—2=+w v C€ (0,11,

s 25{o S [10)0 K

g L Veeinay,

where 1n denotes the natural logarithm.

A metric or quasimetric is also allowed to assume the value +=. In a quasimetric space
(M, 8) we denote the open e-neighbourhood of a point x € M and of a subset H of M, re-
spectively, by

U(x, €) = Us(x, ey ieiMilas(xoeyyic o}

and by



U(H, e) = US(H, ) ={y eM | 3 x €H :8(x,y) <e}
The distance between two non-empty subsets A and B of M is denoted by
BB N {6(x, ) | x €A, € BE

A metric or quasimetric & is explicitly mentioned in topological concepts related to
the topology induced by § whenever it is not clear from the context or if it is dif-

ferent from the ordinary metric or quasimetric on the space considered. In this sense
we use the terms §-closed, §-separable, or ﬁ6 for the closure of a subset A of M re-

lative to the §-topology.

Definitions from measure and probability theory which are not given here may be found,
e.g., in Bauer [3]. A probability measure (W-measure for short) on a measurable space
(X, X) (where X denotes the basic set and X, a o-algebra on X) is a measure m on (X, X)
with m(X) = 1. The expression "v[m] x € B" means "for m-almost all x €B". The essen-
tial supremum of a non-negative measurable function f on X over a measurable set M

(written m-ess sup f(x))is understood to equal zero if m(M) = 0. The restriction of
X€M

the measure m to a measurable subset B of X, defined on the c-algebra {A € X|A < B},
is denoted by m|B. If two measurable sets A and B are given, the conditional probabili-

ty
m(A/B) = J_(_y—l’" el

is defined only if m(B) > 0. Products involving undefined conditional probabilities
are understood to be zero if they have at least one vanishing factor. Otherwise the
product remains undefined. The set of all W-measures on a measurable space (X, X) is
denoted by 1. Thus Tl is a convex subset of the linear space of all finite signed
measures on (X, X). The convex closure of a subset © of I is denoted by <6> and also
by <UPs Hps wees Mp> if @ = {ul, Hos «ees un} c I is a finite set. A convex linear
combination Z'eN“i“i (ai =0, zi€Na1 = 1) of W-measures My € I is also defined for

3
countably infinite index sets N and is itself a W-measure.

Definition 1.1. A convex linear combination ZieNaiui of W-measures Hy is called a non-
trivial convex combination if o, > 0 for all i € N. By a face of the convex set II we

mean any convex subset © of II satisfying

on <, v\ {u, vI 20 =» <, v>c@ VUETIVvVYEITI.
By the face of a W-measure u € T, to be written as z(u), we mean the smallest face of I
which contains .
Remark 1.1. Since the intersection of arbitrarily many faces of II is again a face, the
face of a W-measure is well-defined. It has the following properties:

(1) x(u) is convex.
@ sq) = (veT | aviel Fa€l0,0) iu=avt(l=a)vi]
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(3) veEz(n) = £(v)<=x(n).

B o(1') =(u)es TV, v €0 3o, BE (0,1)

av el =to )V,
Byt &Gl =B

u 1
u

F4(B)) then all v € 5(u)

(5) If p is non-atomic (i.e. vBe€X3D€eX:DcB, (D)
are non-atomic.

(6) =(n) is the set of all W-measure v € Il which are absolutely continuous with
respect to u and whose density g%-is p-almost certainly bounded.

1.B The sequence space AN

For an introduction to ergodic theory the reader should consult, e.g., Billingsley
[11] or Denker/Grillenberger/Sigmund [21].

Let A be a denumerable set and let X := AN be the space of all sequences in A. The set
A is called the state space and its elements, states. Subsets of X of the form

[E] L3 [bl, b2, RIS b]] = {(Xl, X2, ...) € X l (Xl, XZ, ey ?I(]) =p—} s
b= (bys bys ..os by) €A

are called cylinders of order 1. For any block b = (bl’ b2’ s b]) € A], the symbol
b' denotes the block b' := (by, by, ..., by_1) €A . For any point x € X, Tet Z (x)= X
and let Zn(x) be the cylinder of order n containing the point x. Similarly, we let

[b] := X for all b = (by, ..., by) € A°.

By X we denote the smallest o-algebra on X containing all cylinders of all orders. The
shift T is the measurable mapping of X onto itself defined by

T(xl, X5 o) Rl (XZ’ X35 sl v (xl, Xs5 i) s Sl G

A W-measure on the measurable space (X, X) is uniquely determined by its values on all
cylinders. On the other hand, any set function p defined on the cylinders and satis-
fying the conditions :

(W1) zbeAu([b]) =1 and

(W2) zbeAu([bl, sass DD )5e u([bl, e b]]) v (bl, sk b]) €A
may be extended to a W-measure u on (X, X) in a unique manner. Instead of p([b]) or

u([bl, b2, e, b]]) we also write u(b) or u(bl, bZ’ T b]), respectively. In this

4. by
sense, the symbol u(b/b") = aTBl—————Bl——T may be interpreted as the conditional
= bt

T vi1en,

probability for the transition of the system to the state b] after having passed
through the states by, bos +evs by_q-

A W-measure p on (X, X) is called invariant if it is invariant under the shift T, i.e.
if
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w1y = u(y) v YEX.
This definition is equivalent to the following condition:

L vieN

B (b, by, by, ... b)) = u(b) Vb= (by.by, ...oby) €A

An invariant W-measure u on (X, X) is called ergodic if each invariant set has measure
0 or 1, i.e. if all measurable sets Y have the property:

N . () € (0.1}

This is equivalent to the condition

B T -0 - uM {01} vYEX,

where A denotes the symmetric difference. In addition to the set I of all W-measures
n (X, X) we consider the set Moy of all invariant W-measures and the set I of

erg

all ergodic W-measures on (X, X). Clearly Herg eI, cI

The entropy E(u) of an invariant W-measure p is defined as

E(u) := 1im 2= £ u(b) Tn u(b).
N> beA

The quantity bEA u(b) In u(b) is finite if and only if E(y) is finite, in which case
one has has representation

E(u) = 1im -5 wu(b) Tn u(b/b').
N> beA

The following Individual Ergodic Theorem of Birkhoff is true:
Theorem. Let p be an invariant W-measure on (X, X) and let f be a p-integrable func-
tion on X. Then the sequence

=
fi(x) = 2zl 0 f(T'x)

of arithmetical means converges p-almost everywhere to a u-integrable function f*(x),
and the relations

Jfrdy = [f du,

Tim ]]fn S e

n->c

*(Tx) =0 k() v [ulx eX
are true.

For an ergodic measure p the 1imit function f* is constant up to a u-null set. If
f = Xg is the characteristic function of a measurable set B of X then f (x) is the
relative frequency of the points x, Tx, T Xy 1x contained in B. For an ergodic




measure u one then has

Tim fn(x) = u(B) v [p] x € Xo
n->cc
Shannon-McMillan-Breiman Theorem. Let u € Herg with E(n) < . Then
Tim 2l inw(z, (x)) = E(w v [u] X € X.
n->co

A Bernoulli measure on (X, X)is defined as an invariant W-measure on (X, X) relative
to which T is a Bernoulli shift. In this case one has

(W) u(b) =m ) ub,) Vb= (b, ....b) €Al v1eN.

The entropy of a Bernoulli measure is equal to
E(u) = ~Zyep u(b) Tn u(b).

By Markov measures of order 1, 1 € N, we mean invariant |{-measures on (X, X) relative
to which T is a Markov shift. (In the literature, Markov measures are generally not
assumed to be invariant). Markov measures of order 1 are characterized by the follow-
ing "Markov property":

h T kg 6 TR
u e =i Dt
1 n 1 G s AR R

n
v (bl’ -5 b)) €A
or

MUEBg e an Dl 2000y waivw B ) w ullBl 0 0 B Y LT, o S b T

The conditional probability for the transition from the state bn-l to the state bn

depends only on the 1 states bn_], b oy bn—l but not on additional states of

n-1+1° °°
the more distant past. According to our conventions we may consider Bernoulli measures
as Markov measures of order 0. The entropy of a Markov measure p of order 1 is
E(w) = =X 1,7 u(b) Tn u(b/b'), provided -z u(b) In u(b) < w.
beA beA
In all other cases, E(u) = «. The Markov property implies that

Ehiss cabiig )

(W5} lbeu e Bn) = by, cicp budiat oo Sy g

for all Markov measures of order 1, where the right-hand side is understood to mean
zero if one of the conditional probabilities involved is undefined; in this case one
of the preceding factors is zero already. A Markov measure of order 1 is also uniquely
determined by its values on the cylinders of the order 1 + 1.

In order to have a succinct representation for the value assumed by a Markov measure
on a given cylinder, we agree to use the following two functions. For two W-measures
wand Pand 1 € N, let
1 |
E'fusP) = ~3 1 u(b) In P(b/b'),
beA
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where El (1, P) = « if there exists a b € Al with u(b) > 0 and P(b) = 0. The function
E](u, P) is affine with respect to u as long as it remains finite, i.e., for arbi-
Brary. Py 1, v € I with E1(u, P) < » and E](v, P) <= the function satisfies the equa-
tion

E]

1

(au + (1-a)vs P) = af' (u, P) + (1-a)E' (v, P) v o € [0,11.

For any invariant W-measure p with finite entropy it turns out that
E(u) = 1im E' (u, ).
10

If P is a Markov measure of order 1 and if u is an invariant W-measure then

e L R

In this case we shall write E(u, P) for E]+l(u, Pis

For any point x € X a sequence {hn(x)} N of W-measures on (X, X) is defined by the

n
equations

h(x)(B) = 22172 x(T'x) VB EX T yneN.

For a block b € A] we shall also write hn(x, b) or hn(x; bl’ Sk b]) instead of
hn(x)([gj) or hn(x)([bl, sty b]]) , respectively. Clearly, hn(x, b) is the relative
frequency by which the block (bl, S b]) occurs in the sequence (Xl’XZ""’Xn+1-1)’
where x stands for the infinite sequence (Xl’ Xps X35 e

With this notation, a Bernoulli measure p satisfies the relation

(W6) -%% In w(Z,(x)) = =Tep hp(xs b) In u(b)

= E4(h (x), 1) vxeX vneN.

For a Markov measure u of order 1 one has

(W7) %} n u(z,(x)) = ;%- n u(Z;(x)) - s hy(x» b) Tn u(b/b')
_1 5

= 2L 1wz (0)) + E*(h (x), W) VX EXVneEN.

Every ergodic measure u satisfies the condition
(W8)  Tim b (x, b) = u(b) vbeA v1eN v [ul x €X

n->co

If the state base A is finite then (W7) and (W8) imply the relation

(W9) Tim ZE Tn P(Z,(x)) = E(u, P) v [ul x € X
n-><
for any ergodic W-measure u and any Markov measure P.
The weak topology on the set I of all W-measures on the sequence space (X, X) is the

roughest topology on I relative to which, for any 1 € N and each block b € A", the



