Database

Applications

lin soL

&ARD T. SNNODGRASS

Developing
Time-Oriented
Database
Applications

RICHARD T. SNODGRASS

San Francisco, California

Senior Editor Diane D. Cerra

Director of Production & Manufacturing Yonie Overton

Production Editor Edward Wade

Editorial Coordinator Belinda Breyer

Cover Design Ross Carron Design

Cover Illustration Michael Bloomenfeld, AEC
Text Design Mark Ong, Side By Side Studios
Technical Illustration Cherie Plumlee
Composition Ed Sznyter, Babel Press
Copyeditor Ken DellaPenta
Proofreader Jennifer McClain

Indexer Steve Rath

Printer Courier Corporation

Chapter opener art based on illustrations from the following sources: Chapters 1, 12, and 13 from Brackin, A. J.,
Clocks: Chronicling Time, Encyclopedia of Discovery and Invention, Lucent Books, 1991; Chapters 2, 3, 4, 5, and
6 from Woodward, P., My Own Right Time: An Exploration of Clockwork Design, Oxford University Press, 1995;
Chapters 7, 8, and 9 from Britton, F. J., The Escapements: Their Action, Construction, and Proportion, Geo. K. Hazlitt
& Co., reprinted by Arlington Book Co, 1984; and Chapters 10 and 11 from Headrick, M. V., Clock and Watch
Escapement Mechanics, self-published, 1997.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances where Morgan Kaufmann Publishers is aware of a claim, the product names appear
in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
Editorial and Sales Office

340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205

USA

Telephone 415-392-2665
Facsimile 415-982-2665
Email mkp@mkp.com
WwWw http://www.mkp.com

Order toll free 800-745-7323

© 2000 by Morgan Kaufmann Publishers
All rights reserved
Printed in the United States of America

04 03 02 01 00 S 43 21

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission
of the publisher.

Library of Congress Cataloging-in-Publication Data.

Snodgrass, Richard T.
Developing time-oriented database applications in SQL / Richard T. Snodgrass.
cm.
Includes bibliographical references.
ISBN 1-55860-436-7
1. SQL (Computer program language) 2. Database design.
L. Title.
QA76.73.867856 2000 .
005.75"6—dc21 99-14298

CcIp

Concept Map

Instant (3.1)
User-defined time < Interval (3.2)
Period (4)

Defining

_State (5,11.3)
Tables< Event (71.3)
Partitioned (7.5)

Integrity constraints (5.3-5.6, 11.3)

A

Current (6.1, 11.7.1)
Sequenced (6.3, 11.7.1)
Nonsequenced (6.4, 11.7.1)

Valid time Querying

/N

Current (7.1, 11.7.2)
Sequenced (7.2, 11.7.2)
Nonsequenced (7.3, 11.7.2)

State/State (10.1)
Tables < State/Event (71.3)
Partitioned (70.5, 11.4)

Integrity constraints (10.4, 11.3, 11.5.2)

Modifying

/N

Defining

/\

Querying (10.3, 11.7.1)
Modifying (70.2, 11.7.2)
Event (8.1, 11.3)

State (9.1)
Partitioned (9.4)

Defining

i\

Transaction time Querying (8.2, 9.3, 11.7.1)

Modifying (8.3, 9.2, 11.7.2)

Developing
Time-Oriented
Database Applications

in SQL

THE MORGAN KAUFMANN SERIES IN
DATA MANAGEMENT SYSTEMS

Series Editor, Jim Gray

Developing Time-Oriented Database Applications in
sQL
Richard T. Snodgrass

Joe Celko’s Data and Databases: Concepts in Practice
Joe Celko

Web Farming for the Data Warehouse
Richard D. Hackathorn

Database Modeling & Design, Third Edition
Toby]. Teorey

Management of Heterogeneous and Autonomous
Database Systems

Edited by Ahmed Elmagarmid, Marek
Rusinkiewicz, and Amit Sheth

Object-Relational DBMSs: Tracking the Next Great
Wave, Second Edition

Michael Stonebraker and Paul Brown with
Dorothy Moore

A Complete Guide to DB2 Universal Database
Don Chamberlin

Universal Database Management: A Guide to
Object/Relational Technology
Cynthia Maro Saracco

Readings in Database Systems, Third Edition
Edited by Michael Stonebraker and Joseph M.
Hellerstein

Understanding SQL’s Stored Procedures: A Complete
Guide to SQL/PSM
Jim Melton

Principles of Multimedia Database Systems
V. S. Subrahmanian

Principles of Database Query Processing for Advanced
Applications
Clement T. Yu and Weiyi Meng

The Object Database Standard: ODMG 2.0
Edited by R. G. G. Cattell and Douglas K. Barry

Advanced Database Systems

Carlo Zaniolo, Stefano Ceri, Christos Faloutsos,
Richard T. Snodgrass, V. S. Subrahmanian, and
Roberto Zicari

Principles of Transaction Processing
Philip A. Bernstein and Eric Newcomer
Using the New DB2: IBM’s Object-Relational Database

System
Don Chamberlin

Distributed Algorithms
Nancy A. Lynch

Active Database Systems: Triggers and Rules For
Advanced Database Processing
Edited by Jennifer Widom and Stefano Ceri

Joe Celko’s SQL for Smarties: Advanced SQL
Programming
Joe Celko

Migrating Legacy Systems: Gateways, Interfaces, & the
Incremental Approach
Michael L. Brodie and Michael Stonebraker

Database: Principles, Programming, and Performance
Patrick O’Neil

Atomic Transactions
Nancy Lynch, Michael Merritt, William Weihl, and
Alan Fekete

Query Processing for Advanced Database Systemns
Edited by Johann Christoph Freytag, David Maier,
and Gottfried Vossen

Transaction Processing: Concepts and Techniques
Jim Gray and Andreas Reuter

Understanding the New SQL: A Complete Guide
Jim Melton and Alan R. Simon

Building an Object-Oriented Database System: The
Story of Oz

Edited by Francois Bancilhon, Claude Delobel, and
Paris Kanellakis

Database Transaction Models for Advanced
Applications

Edited by Ahmed K. Elmagarmid

A Guide to Developing Client/Server SQL Applications

Setrag Khoshafian, Arvola Chan, Anna Wong, and
Harry K. T. Wong

The Benchmark Handbook for Database and
Transaction Processing Systems, Second Edition
Edited by Jim Gray

Camelot and Avalon: A Distributed Transaction
Facility

Edited by Jeffrey L. Eppinger, Lily B. Mummert,
and Alfred Z. Spector

Readings in Object-Oriented Database Systems
Edited by Stanley B. Zdonik and David Maier

A Merrie
Ce jour, et toujours

Mach’ es wie die Sonnenuhr
Zahl’ die heiteren Stunden nur

Do like the sundial:
Count only the bright hours

— German proverb

Foreword

by Jim Gray
Microsoft Research

Precise clocks were developed so that seafarers could find their longitude. Precise
temporal data techniques were recently developed to help database designers record
and reason about temporal information. It is paradoxical that we are only now com-
ing to understand how to think about time and represent it in formal systems. After
all, time is the fourth dimension; it is at the core of existence. Yet, it is only recently
that we have come to understand the fundamental concepts of instants, intervals,
periods, sequenced changes, valid time, transaction time, and a bitemporal view of
information.

Richard Snodgrass and his colleagues have explored temporal data concepts over
the last two decades. They now have a fairly complete solution to the problems.
Indeed the concepts are now being added to the SQL language standard. This book
summarizes their work and presents it in a very accessible and useful way.

Temporal databases, viewed from this modern perspective, are surprisingly sim-
ple and powerful. The book gives examples of 85-line SQL programs that collapse
to 3-line programs when the new concepts are applied. It introduces the concepts
using concrete examples and conventional SQL. I found this mix of theory and
practice very instructive and very easy to follow.

The book explains that temporal databases can be designed in two steps. First,
the static database can be designed. Then, in a second pass, each table and con-
straint is given its temporal attributes. This makes design much more tractable.
This approach is made all the more attractive by the fact that the temporal SQL
language extensions are just modifiers to standard queries and updates—this very
elegant approach makes temporal issues orthogonal to the other language issues.

I highly recommend this book to anyone interested in temporal data—either
designing and building databases that record information over time, or just under-
standing the concepts that underlie representing temporal information. This book
does an excellent job of organizing and summarizing this important area.

&
N

R

-
i \
R
f

e

ot

Bon ¥
e W : ot
§ % % i l g o
¢ “«1 E * %"@u\,«;\ o
5 P, ey = @ e
ti g 3 j { N \\ w
[-
5 £
X - - 4 =
5> i

Foreword

by Jim Melton
Oracle Corporation

It's about time—time that a book like this was written and time that the SQL
community got the benefits of the careful analysis and thought put into the subject.

Rick Snodgrass is one of the relatively few researchers in the field of temporal
databases and has proved himself to be one of the more important of those few,
in part because he insists on applying the theoretical knowledge gained from his
research to practical applications and to real products.

Snodgrass proposed in 1992 that temporal extensions to SQL be developed by
the temporal database community. In response to this proposal, a virtual commit-
tee was formed to design extensions to the 1992 edition of the SQL standard (ANSI
X3.135.-1992 and ISO/IEC 9075:1992); those extensions, known as TSQL2, were
developed during 1993 by this committee meeting only via email. In late 1993,
Snodgrass first presented this work to the group responsible for the American Na-
tional Standard for Database Language SQL, ANSI Technical Committee X3H2 (now
known as NCITS H2).

In response to Snodgrass’s presentation, X3H2 proposed to the International Or-
ganization for Standardization (ISO) that the project to extend the standard for
SQL be enhanced by adding a subproject for temporal extensions to the language.
This proposal was accepted in 1994, and an initial document for ISO/IEC 9075-7,
known as SQL/Temporal, was started. Over the next two years, a series of propos-
als from Snodgrass and others were considered by the ISO group responsible for
SQL (ISO/IEC JTC1/SC21/WG3, later ISO/IEC JTC1/SC32/WGS3), but progress was
slowed considerably by the need to focus on what has recently been published as
SQL:1999. Work will undoubtedly resume on progressing SQL/Temporal in 1999
for publication early in the next millennium, and Snodgrass will no doubt play a
significant role in its standardization.

FOREWORD BY JIM MELTON

The book you hold has been a long time in the making, not only because the
subject matter can seem overwhelmingly complex if not presented carefully, but
also because of the great number of examples that Snodgrass has taken from real
application systems and translated into standard SQL and its proposed extensions.
(Of course, not all of the examples can be used in all SQL products today; some of
them are directed toward specific vendors’ systems, while others depend on future
extensions to the language.) The result of that care and extensive use of examples
is great clarity and focus, yielding ready comprehension to readers willing to give
the book the attention it deserves. I recommend this book very highly to all SQL
practitioners, especially those with an interest in the temporal semantics of data.

Preface

This is how it goes.

We develop a database application, and initially the project proceeds smoothly
enough. There are alternatives to weigh during the schema design, problems to con-
tend with while writing the SQL code, and constant reconfiguration and interaction
with other programs and legacy data, but all in all the project is under control. Then
we decide that one of the tables needs another DATE column, recording when the
row was valid. (After all, we added a birth date column a few weeks ago, with no
surprises.) So we rework the part of the application that maintains that table, notic-
ing that the code is getting more complicated. During testing, we discover that the
primary key no longer is sufficient. We add the DATE column to the primary key,
acknowledging that this is only a stopgap measure, and hope that the input data
will be well formed, as there isn’t time to write code that checks those constraints
properly. In the back of our mind is the lingering doubt that perhaps referential
integrity checking isn’t working quite right either.

We soon realize that we need another DATE column to record when the row
was no longer valid. In doing so we encounter a raft of off-by-one bugs, in which
some less-than comparisons should have been ‘<=’, and other places where we need
to add “+ '1' DAY”. We think we've found all the code locations that need to be
changed, but we're not sure. And we now know for a fact that the primary and
foreign keys are wrong, but we don’t know how to even approach that mess.

The code to modify the database is becoming increasingly convoluted. Each
modification has to at least consider changing the DATE columns, but it isn’t at
all clear how to approach such changes in a systematic fashion. And even the most
trivial queries, such as “Who was Aaron’s manager when he worked on the Capital
account?”, which before we could code in our sleep, now become painful to even
contemplate writing in SQL.

Around this time, users start complaining that reports aren’t consistent, that
copies of the end-of-the-year summary have different numbers in them. Looking

XViii

PREFACE

into this anomaly, we finally figure out that the reports were run at different times,
and the data had been changed in the meantime. We then realize that there is no
way to correlate the end-of-the-year report with the cash flow report, unless they
are run at the same time. Users are adopting an irreverent view of these reports: if
you wait a few days, maybe the numbers will fix themselves.

To address the inconsistencies in the reports, someone suggests a quick fix: add
another DATE column. The development group responds with astonishment and
chagrin. How can we possibly get the code working with another DATE column,
when we all know how much work resulted from adding the previous column?
In fact, some in the group despair of ever getting the code as is, with just two
DATE columns, working correctly—there are just too many arbitrary decisions, each
layered on other equally ill-motivated quick fixes.

Looking back on the history of the development process, everyone has a vague
idea that the problems started when that pesky DATE column was first added. How
could one column flummox the whole system? And why do some columns, such
as the birth date column, slide in smoothly, and other DATE columns cause no end
of problems?

A PARADIGM SHIFT

Thomas Kuhn, in his insightful and highly influential book, The Structure of Scien-
tific Revolutions [64], argued that science does not proceed in a linear, monotonic ac-
cumulation of knowledge, but rather exhibits intellectually jarring discontinuities,
as radical ideas become the established world view, replacing the now-discredited
prior conceptual foundation.

Two decades of research into temporal databases have unequivocally shown that
a time-varying table, containing certain kinds of DATE columns, is a completely
different animal than its cousin, the table without such columns. Effectively de-
signing, querying, and modifying time-varying tables requires a different set of
approaches and techniques than the traditional ones taught in database courses
and training seminars. Developers are naturally unaware of these research results
(and researchers are often clueless as to the realities of real-world applications de-
velopment). As such, developers often reinvent concepts and techniques with little
knowledge of the elegant conceptual framework that has evolved and recently con-
solidated, and researchers continue to conceal this framework with overly formal
prose, never bothering to make the connection with existing tools at hand.

This book is an attempt to recast the insights from some 1600 papers in the
research literature into terms usable by those brave SQL application coders working
in the trenches. These concepts are integrated with the state-of-the-art approaches
utilized by forward-thinking developers, as showcased in the case studies that form
the bulk of the book. The result is, to use Kuhn's phrase, a paradigm shift in how

WHAT TO READ XiX

we think about time-varying data. This shift impacts how such tables are specified,
how they are maintained, and how they are queried.

PREREQUISITES

I assume you are comfortable with the SQL query language. This book is not a
primer on that language, though I do cover the temporal data types and tempo-
ral constructs of SQL-92 in depth. There are many excellent books that serve as
introductions to SQL.

It helps if you have implemented an application involving time-varying data, if
only to realize firsthand how difficult and confusing such a project can be, and thus
to appreciate the degree to which the approach presented here helps clear out the
undergrowth and achieve an elegant and unfettered design. One chapter assumes
familiarity with the entity-relationship model; the rest of the book focuses solely
on the relational model.

The conceptual tools introduced here are in a specific and fundamental way ex-
tensions of existing strategies, so everything you've learned until now (well, almost
everything) will be useful in this brave new world. The hardest part, for which I'll
provide careful guidance, is to jettison the notion that this DATE column “is just
another column.” Operating under the old assumptions unhappily doesn’t work, as
project after project after project has shown. Paradigm shifts are always scary, but
the benefits are there for those willing to make the jump.

WHAT TO READ

The best way to understand the principles of time-varying applications and their
expression in SQL is to work through a series of tangible examples. By examining
the design issues that arise and the kinds of constraints, queries, and modifications
that we wish to express in implementing these specific applications, you will gain
an appreciation of the abstract principles at play. For this reason, the bulk of this
book is comprised of case studies.

Each case study sets the stage with a discussion of the application domain, which
includes oil field records, cattle location information, and cadastral data. The rel-
evant tables are introduced, followed by a discussion of the design, querying, and
modification of these (time-varying) tables. While the applications and the people
mentioned in the case studies all exist, the specific SQL examples have been tailored
to bring out the issues under discussion.

The case studies were easy to locate. It seems that most database applications
involve time-varying data. Indeed, applications that are inherently not temporal
are about as prevalent as the proverbial hen’s teeth. In fact, the only places you

XX

PREFACE

encounter nontemporal examples are in books and seminars, a phenomenon that
unintentionally emphasizes the inherent complexity of time-varying applications.

To understand the fundamental concepts, you are encouraged to read all the
chapters, even if you aren’t an oil field engineer or a veterinarian. Each case study
brings out a new category of temporal data, with its unique characteristics and de-
mands. In fact, by studying other fields, you are relieved of the minutiae of your
current environment. By studying a foreign language or culture, a deeper under-
standing of your own language or culture often follows as an additional, or even
sometimes primary, benefit. After you have read the book, a productive approach
to address a new set of requirements is to ask, To which case study is the application
under development most closely related? Then the relevant code fragments can be
customized to the problem at hand.

A few sections are marked with an asterisk to indicate advanced material. Feel
free to skip these sections on a first, or even second, reading.

CASE STUDIES

Befitting the book’s categorization as nonfiction, the people and their situations
are as described herein. The specifics of their solutions to the problems presented
by time-varying data have been adapted to better illustrate general approaches that
I wish to emphasize. Most of the SQL code was written by use for the book, but it is
reminiscent of that appearing in the actual applications. In the discussion, I have
attempted to not oversimplify. Much of the complexity inherent in these applica-
tions is cleverly hidden in the details, and any realistic solution must ultimately
confront the enterprise in all its glory and intricacy.

CD-ROM

The included CD-ROM contains the code fragments implemented in a variety of
commercial systems, including IBM DB2 Universal Database (UDB), Ingres, Inform-
ix—Universal Server, Microsoft Access, Microsoft SQL Server, Sybase SQLServer, Ora-
cle8 Server, and UniSQL. While these code fragments have been tested, the author
and the publisher make no claims as to the suitability or correctness of these code
fragments.

Also included are versions of some of the systems discussed in Chapter 12.

ERRORS

I would appreciate hearing about any errors that you find in the book, as well as re-
ceiving any other constructive suggestions you may have. (I'd especially like to hear

ACKNOWLEDGMENTS XX i

of better ways to write individual code fragments.) Please email your comments to
the author at snodgrass@mkp.com.

ACKNOWLEDGMENTS

The specific content of this book, as well as its overall composition, came about
through collaboration with my dear friend and colleague Christian S. Jensen, who
has assembled and directs the world’s strongest temporal database research group at
the University of Aalborg in Denmark. He is present on every single page, looking
over my shoulder, probing, clarifying, generalizing, exemplifying. While the words
in this book are mine (well, except for “exemplifying,” which is definitely one of his
words!), the ideas are jointly ours, comingled with the contributions of the many
authors discussed in the “Readings” sections. Research is primarily an excuse to
play with ideas, and concepts provide opportunities to interact on a deep level
with others. Much of the joy I have experienced in this crazy business has directly
or indirectly involved Christian, whether in the heady probing of trying to get at
core truths, or in appreciating the shimmering simplicity of the resulting insights
that, once uncovered, are in retrospect obvious.

Many others helped with the case studies, tested the code fragments, read drafts
of this book, and offered nontechnical sustenance.

Cheryl Bach, Jim Barnett, Nigel Corbin, Brad De Groot, Jens Gadgaard, and Chris
Janton were generous with their time in explaining the details of their applications,
which provided the impetus for the case studies.

I thank Anindya Datta, Igor Viguier, and the Department of Information Sys-
tems at the University of Arizona for access to the Sybase DBMS. Cliff Leung from
IBM, Paul Brown from Informix, Nick Kline and Goetz Graefe from Microsoft,
Rafi Ahmed from Oracle, and Jack Reid from UniSQL Customer Support Services
provided help with their respective DBMS products.

I appreciate comments on the manuscript from Rafi Ahmed, John Bair, Paul
Brown, Jim Gray, Brad De Groot, Jeff Gross, Robert Brett Gulledge, Christian S.
Jensen, and Dennis Shasha. Jim Melton went above and beyond the call of duty in
providing two detailed reviews of the entire manuscript.

Amad Arsalan, Scott Calvert, Wen-Ke Chen, Brad De Groot, Alvin Gendrano,
Bruce Huang, Vijaykumar Immanuel, Jie Li, Wei Li, Giedrius Slivinskas, Helen
Thomas, Brad Traweek, and Inés F. Vega-Lopez provided corrections to the code
fragments. Alan Brucks provided information on the year 2000 problem.

I thank the following people who created the content of the CD-ROM: HTML
templates (Christopher Cooper, Jose Alvin Gendrano, Rachana Shah, and Jian
Yang), data types: IBM DB2 UDB (Brad Traweek and Giedrius Slivinskas), Informix—
Universal Server (Jason Cox and Anand Wagle), Ingres (Wen-Ke Chen), Microsoft
Access (Inés F. Vega-Lopez, Lincoln Turner, and Ze-Yuan Zou), Microsoft SQL Server

xXii

PREFACE

(Inés F. Vega-Lopez and Giedrius Slivinskas), Sybase SQLServer (Robert Brett Gul-
ledge and Miltos Vafiadis), Oracle8 Server (Christopher Cooper and Jose Alvin Gen-
drano), and UniSQL (Qing Yan); valid-time state tables: IBM DB2 UDB (Vijayku-
mar Immanuel and Giedrius Slivinskas), Informix-Universal Server (Jason Cox),
Microsoft Access (Ahmad Arsalan and Inés F. Vega-Lopez), Microsoft SQL Server
(Inés F. Vega-Lopez and Giedrius Slivinskas), Sybase SQLServer (Wenmin Chen), Or-
acle8 Server (Jose Alvin Gendrano, Bruce Huang, and Wei Li), and UniSQL (Lincoln
Turner and Carlos Ugarte); temporal join and coalescing: Access (Yuji Nishimura,
Dhumil Sheth, and Lincoln Turner), IBM DB2 UDB (Jie Li and Kristin Tolle), Oracle8
Server (Jose Alvin Gendrano), and Sybase SQLServer (Sameer Verkhedkar and Xi-
anjin Yang); tracking logs: IBM DB2 UDB (Helen Thomas and Giedrius Slivinskas),
Microsoft SQL Server (Inés F. Vega-Lépez and Giedrius Slivinskas), Sybase SQLServer
(Yi-Jin Shi), Oracle8 Server (Scott Calvert and Wei Li), and UniSQL (Rachana Shah);
transaction-time state tables: Microsoft SQL Server (Inés F. Vega-Lépez and Giedrius
Slivinskas) and Oracle8 Server (Scott Calvert and Wei Li); bitemporal tables: Ora-
cle8 Server (Scott Calvert and Wei Li); the capstone case: Oracle8 Server (Wei Li);
TIMEDB: Andreas Steiner; TIGER: Michael Béhlen; Synchrony: John Bair, Hollis
Chin, and Michael Soo; and the white papers: W. L. A. Derks, Heidi Gregersen,
Christian S. Jensen, Leo Mark, Janne Skyt, and Jeroen Wijnands. Jian Yang superbly
assembled all the files into a coherent and consistent whole. I also appreciate the
support over the years from the National Science Foundation, recently via grants
IR[-9632569 and ISI-9817798, and from AT&T Corporation, DuPont Corporation,
IBM Corporation, and NCR Corporation, which enabled the research that provides
the foundation for this book.

My editor, Diane Cerra, was wonderful throughout the involved process of writ-
ing and producing this book. I especially appreciate her constant quest for quality.
I've written for several editors and publishers, and Diane and Morgan Kaufmann
are by far the most author- and book-friendly.

The design of this book is considerably more complex than that of my other
books. Edward Wade worked closely with me on this design. Although I would not
have thought it possible, Edward cared as much as I did about getting the design just
so, putting his heart into the project. The design feels right, and Edward deserves
most of the credit. Edward, it was truly a joy to work with you.

Finally, I thank my wife, Merrie, and my two children, Eric and Melanie, for
continually emphasizing by their example that life is so much more than book
writing. They provided delightful distractions—how could I resist rambling through
the park, or reading a poem by Shel Silverstein, or helping out on a pinewood derby
car? ‘

One of the oft-unexpected benefits of taking photographs, whether as a hobby
or as a profession, is that you see more vividly. The veins within a fallen leaf be-
come all-absorbing, and shadows on a building are suddenly profound and evoca-
tive. My experience in writing this book has been similar, in that the words I
have been fortunate to encounter in my reading and listening have particularly

