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A Merrie
Ce jour, et toujours




Mach’ es wie die Sonnenuhr
Zahl’ die heiteren Stunden nur

Do like the sundial:
Count only the bright hours

— German proverb




Foreword

by Jim Gray
Microsoft Research

Precise clocks were developed so that seafarers could find their longitude. Precise
temporal data techniques were recently developed to help database designers record
and reason about temporal information. It is paradoxical that we are only now com-
ing to understand how to think about time and represent it in formal systems. After
all, time is the fourth dimension; it is at the core of existence. Yet, it is only recently
that we have come to understand the fundamental concepts of instants, intervals,
periods, sequenced changes, valid time, transaction time, and a bitemporal view of
information.

Richard Snodgrass and his colleagues have explored temporal data concepts over
the last two decades. They now have a fairly complete solution to the problems.
Indeed the concepts are now being added to the SQL language standard. This book
summarizes their work and presents it in a very accessible and useful way.

Temporal databases, viewed from this modern perspective, are surprisingly sim-
ple and powerful. The book gives examples of 85-line SQL programs that collapse
to 3-line programs when the new concepts are applied. It introduces the concepts
using concrete examples and conventional SQL. I found this mix of theory and
practice very instructive and very easy to follow.

The book explains that temporal databases can be designed in two steps. First,
the static database can be designed. Then, in a second pass, each table and con-
straint is given its temporal attributes. This makes design much more tractable.
This approach is made all the more attractive by the fact that the temporal SQL
language extensions are just modifiers to standard queries and updates—this very
elegant approach makes temporal issues orthogonal to the other language issues.

I highly recommend this book to anyone interested in temporal data—either
designing and building databases that record information over time, or just under-
standing the concepts that underlie representing temporal information. This book
does an excellent job of organizing and summarizing this important area.
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Foreword

by Jim Melton
Oracle Corporation

It's about time—time that a book like this was written and time that the SQL
community got the benefits of the careful analysis and thought put into the subject.

Rick Snodgrass is one of the relatively few researchers in the field of temporal
databases and has proved himself to be one of the more important of those few,
in part because he insists on applying the theoretical knowledge gained from his
research to practical applications and to real products.

Snodgrass proposed in 1992 that temporal extensions to SQL be developed by
the temporal database community. In response to this proposal, a virtual commit-
tee was formed to design extensions to the 1992 edition of the SQL standard (ANSI
X3.135.-1992 and ISO/IEC 9075:1992); those extensions, known as TSQL2, were
developed during 1993 by this committee meeting only via email. In late 1993,
Snodgrass first presented this work to the group responsible for the American Na-
tional Standard for Database Language SQL, ANSI Technical Committee X3H2 (now
known as NCITS H2).

In response to Snodgrass’s presentation, X3H2 proposed to the International Or-
ganization for Standardization (ISO) that the project to extend the standard for
SQL be enhanced by adding a subproject for temporal extensions to the language.
This proposal was accepted in 1994, and an initial document for ISO/IEC 9075-7,
known as SQL/Temporal, was started. Over the next two years, a series of propos-
als from Snodgrass and others were considered by the ISO group responsible for
SQL (ISO/IEC JTC1/SC21/WG3, later ISO/IEC JTC1/SC32/WGS3), but progress was
slowed considerably by the need to focus on what has recently been published as
SQL:1999. Work will undoubtedly resume on progressing SQL/Temporal in 1999
for publication early in the next millennium, and Snodgrass will no doubt play a
significant role in its standardization.



FOREWORD BY JIM MELTON

The book you hold has been a long time in the making, not only because the
subject matter can seem overwhelmingly complex if not presented carefully, but
also because of the great number of examples that Snodgrass has taken from real
application systems and translated into standard SQL and its proposed extensions.
(Of course, not all of the examples can be used in all SQL products today; some of
them are directed toward specific vendors’ systems, while others depend on future
extensions to the language.) The result of that care and extensive use of examples
is great clarity and focus, yielding ready comprehension to readers willing to give
the book the attention it deserves. I recommend this book very highly to all SQL
practitioners, especially those with an interest in the temporal semantics of data.



Preface

This is how it goes.

We develop a database application, and initially the project proceeds smoothly
enough. There are alternatives to weigh during the schema design, problems to con-
tend with while writing the SQL code, and constant reconfiguration and interaction
with other programs and legacy data, but all in all the project is under control. Then
we decide that one of the tables needs another DATE column, recording when the
row was valid. (After all, we added a birth date column a few weeks ago, with no
surprises.) So we rework the part of the application that maintains that table, notic-
ing that the code is getting more complicated. During testing, we discover that the
primary key no longer is sufficient. We add the DATE column to the primary key,
acknowledging that this is only a stopgap measure, and hope that the input data
will be well formed, as there isn’t time to write code that checks those constraints
properly. In the back of our mind is the lingering doubt that perhaps referential
integrity checking isn’t working quite right either.

We soon realize that we need another DATE column to record when the row
was no longer valid. In doing so we encounter a raft of off-by-one bugs, in which
some less-than comparisons should have been ‘<=’, and other places where we need
to add “+ '1' DAY”. We think we've found all the code locations that need to be
changed, but we're not sure. And we now know for a fact that the primary and
foreign keys are wrong, but we don’t know how to even approach that mess.

The code to modify the database is becoming increasingly convoluted. Each
modification has to at least consider changing the DATE columns, but it isn’t at
all clear how to approach such changes in a systematic fashion. And even the most
trivial queries, such as “Who was Aaron’s manager when he worked on the Capital
account?”, which before we could code in our sleep, now become painful to even
contemplate writing in SQL.

Around this time, users start complaining that reports aren’t consistent, that
copies of the end-of-the-year summary have different numbers in them. Looking
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into this anomaly, we finally figure out that the reports were run at different times,
and the data had been changed in the meantime. We then realize that there is no
way to correlate the end-of-the-year report with the cash flow report, unless they
are run at the same time. Users are adopting an irreverent view of these reports: if
you wait a few days, maybe the numbers will fix themselves.

To address the inconsistencies in the reports, someone suggests a quick fix: add
another DATE column. The development group responds with astonishment and
chagrin. How can we possibly get the code working with another DATE column,
when we all know how much work resulted from adding the previous column?
In fact, some in the group despair of ever getting the code as is, with just two
DATE columns, working correctly—there are just too many arbitrary decisions, each
layered on other equally ill-motivated quick fixes.

Looking back on the history of the development process, everyone has a vague
idea that the problems started when that pesky DATE column was first added. How
could one column flummox the whole system? And why do some columns, such
as the birth date column, slide in smoothly, and other DATE columns cause no end
of problems?

A PARADIGM SHIFT

Thomas Kuhn, in his insightful and highly influential book, The Structure of Scien-
tific Revolutions [64], argued that science does not proceed in a linear, monotonic ac-
cumulation of knowledge, but rather exhibits intellectually jarring discontinuities,
as radical ideas become the established world view, replacing the now-discredited
prior conceptual foundation.

Two decades of research into temporal databases have unequivocally shown that
a time-varying table, containing certain kinds of DATE columns, is a completely
different animal than its cousin, the table without such columns. Effectively de-
signing, querying, and modifying time-varying tables requires a different set of
approaches and techniques than the traditional ones taught in database courses
and training seminars. Developers are naturally unaware of these research results
(and researchers are often clueless as to the realities of real-world applications de-
velopment). As such, developers often reinvent concepts and techniques with little
knowledge of the elegant conceptual framework that has evolved and recently con-
solidated, and researchers continue to conceal this framework with overly formal
prose, never bothering to make the connection with existing tools at hand.

This book is an attempt to recast the insights from some 1600 papers in the
research literature into terms usable by those brave SQL application coders working
in the trenches. These concepts are integrated with the state-of-the-art approaches
utilized by forward-thinking developers, as showcased in the case studies that form
the bulk of the book. The result is, to use Kuhn's phrase, a paradigm shift in how
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we think about time-varying data. This shift impacts how such tables are specified,
how they are maintained, and how they are queried.

PREREQUISITES

I assume you are comfortable with the SQL query language. This book is not a
primer on that language, though I do cover the temporal data types and tempo-
ral constructs of SQL-92 in depth. There are many excellent books that serve as
introductions to SQL.

It helps if you have implemented an application involving time-varying data, if
only to realize firsthand how difficult and confusing such a project can be, and thus
to appreciate the degree to which the approach presented here helps clear out the
undergrowth and achieve an elegant and unfettered design. One chapter assumes
familiarity with the entity-relationship model; the rest of the book focuses solely
on the relational model.

The conceptual tools introduced here are in a specific and fundamental way ex-
tensions of existing strategies, so everything you've learned until now (well, almost
everything) will be useful in this brave new world. The hardest part, for which I'll
provide careful guidance, is to jettison the notion that this DATE column “is just
another column.” Operating under the old assumptions unhappily doesn’t work, as
project after project after project has shown. Paradigm shifts are always scary, but
the benefits are there for those willing to make the jump.

WHAT TO READ

The best way to understand the principles of time-varying applications and their
expression in SQL is to work through a series of tangible examples. By examining
the design issues that arise and the kinds of constraints, queries, and modifications
that we wish to express in implementing these specific applications, you will gain
an appreciation of the abstract principles at play. For this reason, the bulk of this
book is comprised of case studies.

Each case study sets the stage with a discussion of the application domain, which
includes oil field records, cattle location information, and cadastral data. The rel-
evant tables are introduced, followed by a discussion of the design, querying, and
modification of these (time-varying) tables. While the applications and the people
mentioned in the case studies all exist, the specific SQL examples have been tailored
to bring out the issues under discussion.

The case studies were easy to locate. It seems that most database applications
involve time-varying data. Indeed, applications that are inherently not temporal
are about as prevalent as the proverbial hen’s teeth. In fact, the only places you
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encounter nontemporal examples are in books and seminars, a phenomenon that
unintentionally emphasizes the inherent complexity of time-varying applications.

To understand the fundamental concepts, you are encouraged to read all the
chapters, even if you aren’t an oil field engineer or a veterinarian. Each case study
brings out a new category of temporal data, with its unique characteristics and de-
mands. In fact, by studying other fields, you are relieved of the minutiae of your
current environment. By studying a foreign language or culture, a deeper under-
standing of your own language or culture often follows as an additional, or even
sometimes primary, benefit. After you have read the book, a productive approach
to address a new set of requirements is to ask, To which case study is the application
under development most closely related? Then the relevant code fragments can be
customized to the problem at hand.

A few sections are marked with an asterisk to indicate advanced material. Feel
free to skip these sections on a first, or even second, reading.

CASE STUDIES

Befitting the book’s categorization as nonfiction, the people and their situations
are as described herein. The specifics of their solutions to the problems presented
by time-varying data have been adapted to better illustrate general approaches that
I wish to emphasize. Most of the SQL code was written by use for the book, but it is
reminiscent of that appearing in the actual applications. In the discussion, I have
attempted to not oversimplify. Much of the complexity inherent in these applica-
tions is cleverly hidden in the details, and any realistic solution must ultimately
confront the enterprise in all its glory and intricacy.

CD-ROM

The included CD-ROM contains the code fragments implemented in a variety of
commercial systems, including IBM DB2 Universal Database (UDB), Ingres, Inform-
ix—Universal Server, Microsoft Access, Microsoft SQL Server, Sybase SQLServer, Ora-
cle8 Server, and UniSQL. While these code fragments have been tested, the author
and the publisher make no claims as to the suitability or correctness of these code
fragments.

Also included are versions of some of the systems discussed in Chapter 12.

ERRORS

I would appreciate hearing about any errors that you find in the book, as well as re-
ceiving any other constructive suggestions you may have. (I'd especially like to hear
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of better ways to write individual code fragments.) Please email your comments to
the author at snodgrass@mkp.com.
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