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PREFACE

Start with a collection of practice exercises, add some key formulas, mix in problems from
experience, and sprinkle with paragraphs of explanation: if you wander all over the subject like
that, not having the good sense to know when to stop, you end up with an OMNIBOOK. That's
what happend here.

What is it good for? Perhaps
e a reference book for methods in reactor design
e asupplementary text for a course of study
e the basis for a self paced or self study course on the subject

| firmly believe that learning comes with doing, and with trying to apply ideas to new situa-
tions. Hence this book focuses on solving problems. Try them and if you have trouble then go to
the text for help. | have kept the problems very simple to emphasize principles. Most are solved in
a page or less.

Regarding the text: | should warn the reader that despite its length the Omnibook’s presenta-
tion is rather condensed. In most cases, | have avoided details of derivations and have jumped from
assumptions or starting points directly to the final useful expressions. This compactness is particu-
larly evident in the first few chapters.

A while back when my first book went to press | was confident that it was free from error, just
perfect. Now 400+ errors later | know better. So dear reader, if you question my reasoning (and
there are quite a number of original analyses in this book) or if you find errors, whether big or small,
let me know. | would much appreciate it.

Many have contributed one way or other to this work. First and foremost my thanks go to the
many many senior and graduate students in my classes who helped in so many ways—derivations,
design charts, catching errors, etc. In particular | would like to recognize:

Nick Catipovic Dennis Morgan
Manuk Colakian Mel Olsen
Mohammad Daous Dalkeun Park
Clayton Gosmeyer Jin Yong Park
Goran Jovanovic Dick Turton
Soon Jai Khang Rajesh Somani

Shoichi Kimura Adonis Stephanakis



Then colleagues in the Department and elsewhere who helped me whenever | got stuck, which
was too often:

Tom Fitzgerald Ajit Sadana of NCL, Poona
Ferhan Kayihan Charlie Wicks
Bob Mrazek

There is no forgetting Clover Redfern, Polly Eubanks, Kris Thomsen and Connie Chapman who
so carefully transferred problems from scrawl to type. And to American Meter Co., division of
Singer Corporation (the sewing machine people) my gratitude for letting me use their delightful
Searle cartoon. Who would have thought that Ronald Searle of cat fame was really a reactor man?
Finally a medal for Mary Jo, my wife, for all her help and encouragement in this project. | hope
that she will now let me use the word Omnibook in Scrabble.

I'd like to dedicate this book to my father, Abe, a real engineer; and to my mother, Lily,

indescribable.

Corvallis, Oregon
May 1979



EXPLANATORY NOTES

Basic Philosophy: One can approach the characterization of chemical reactors at different
levels of sophistication, accuracy and complexity. | have always had a soft spot for the simple
model since it is easily solved, usually gives the main features of the process, and a feel for what is
happening. Of course the simple model can always be refined and extended when needed. If its
extension gives a very different answer, this is a warning to look into the matter more carefully.
Albert Einstein put it nicely, and he could have been looking straight at me, when he said, “Every-
thing should be made as simple as possible, but not simpler.”

In general, | have tried to avoid complex material and methods in the Omnibook since there
are so many important elementary ideas to treat on the subject.

Teaching from the Omnibook: Some of this material may be suitable for a first course on
reactors, the rest for advanced courses. Here’s a suggestion.

1.  For a broad background course, which is what | feel a first course on the subject should
be, cover chapters 1, 2, 3, 4, 5 to pg 8, 11, 21, 23 to pg 6, 24 to pg 14, 51, 52 to pg 4,
61, 62. For those who want this material alone, it is available in a slim volume as ““The
Chemical Reactor Minibook."

After this introduction one can cover the remaining material in any order desired, for example:

2.  Gas solids systems: chapters 22, 25, 30's, 50’s

3. Chapters 40's, 60’s, 80's

4, Chapters 6, 7, 8, 9, the rest of 23, 24, 70's, 90’s, etc.

A self paced first course: A number of teachers, and | too, have taught a self paced course

using the Omnibook in its preliminary form plus (sometimes) a text book to fill out. Each teacher

has his own way of doing it. This is how | have tried it.

(a) The student is told that completing twelve chapters means an A; seven chapters, a bare
pass, and so on.

(b) The student studies a particular chapter, tries a few problems, and when he feels ready he
takes a test. This involves doing two problems chosen by me from the end of the chapter.
If he passes he goes on to the next chapter. If not, he tries again.

(c) The tests are offered two or three times a week.
(d) | am available as consultant, to help the student. My aim is not to trick him but to help
him learn the material and pass the tests. Of course the student can guarantee a pass by

doing all the problems at the end of the chapter.

(e) Once a week | give a general lecture on the main ideas on the subject, historical highlights,
interesting industrial experiences, etc.



Students like this approach because they know beforehand exactly what is required of them,
and they can pace themselves accordingly. For me, the teacher, unhappily, it means much more
work. Also, | have an uncomfortable feeling that the student may not retain as much with this type
of course because he focuses too narrowly on his immediate hurdle. A careful follow-up would tell
is this is so.

Problems: A few words about these since they form such a large part of the Omnibook. First
of all let me say that they involve no tricks, all are solvable by the methods and equations in the
text (in fact, frequently the problems came first, then the text was prepared as accompaniment),
most are short, few needing more than one page to solve.

Problems are grouped according to type by the letters A, B, C,...; problems Z are only for dis-
cussion; * designate harder problems; ** are longer ones, usually unsuited for quizzes.

In learning the material it is a good idea to try one problem of each type.

References: The following books are referred to compactly by the authors’ names or by the
underlined words.

J.J. Carberry ““Chemical and Catalytic Reactors”” McGraw-Hill, 1976.

W.H. Corcoran and W.N. Lacey “Introduction to Chemical Engineering Problems” McGraw-Hill,
1970.

P.V. Danckwerts “Gas-Liquid Reactions” McGraw-Hill, 1970.
J.F. Davidson and D. Harrison “Fluidized Particles” Cambridge Univ. Press, 1963.

K.G. Denbigh and J.C.R. Turner “Chemical Reactor Theory, an Introduction” 2nd ed., Cambridge
Univ. Press, 1971.

M. Dixon and E.C. Webb “Enzymes” 2nd ed., Academic Press, 1964.
C.G. Hill, Jr. “An Introduction to Chemical Engineering Kinetics and Reactor Design’” Wiley, 1977.

A. Husain and K. Gangiah “Optimization Techniques for Chemical Engineers” Macmillan of India,
Delhi, 1976.

L.T. Fan “The Continuous Maximum Principle; a Study of Complex Systems Optimization’ Wiley,
1966.

L.T. Fanand C.Y. Wen “Models for Flow Systems and Chemical Reactors”’ Dekker, 1975.
D. Kunii and O. Levenspiel “Fluidization Engineering”” Wiley, 1969.

C_&E_Z: O. Levenspiel “Chemical Reactor Engineering” 2nd ed., Wiley, 1972.

B.G. Levich “Physicochemical Hydrodynamics’’ Prentice Hall, 1962.

J. Monod “Recherches sur la Croissance des Cultures Bactériennes” 2nd ed., Herman, Paris, 1958.



J.H. Perry “"Chemical Engineers’ Handbook” McGraw-Hill; 3rd ed., 1950; 5th ed., 1973.
C.N. Satterfield “Mass Transfer in Heterogeneous Catalysis”” M.I1.T. Press, 1970.
T.K. Sherwood, R.L. Pigford and C.R. Wilke “Mass Transfer’”” McGraw-Hill, 1975.

J.M. Smith ““Chemical Engineering Kinetics” 2nd ed., McGraw-Hill, 1970.
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