ASSEMB L_Et"r:z

B ANGUA G ER
|PROGRAMMING




9766704

T H I R D E D I T I O N
ASSEM L

A NGU A G E
P G Al\/lI\/III\HS

The IBM System/370 Family

E9760704




SPONSORING EDITOR
James. T. DeWolf

PRODUCTION MANAGER
Herbert Nolan

PRODUCTION EDITOR
William J. Yskamp

TEXT AND COVER DESIGNER
Maria Bergner Szmauz

COVER ILLUSTRATOR
Tom Norton

ART COORDINATOR
Loretta M. Bailey

MANUFACTURING SUPERVISOR
Hugh J. Crawford

This book is in the Addison-Wesley Series in Computer Science.

Michael A. Harrison
Consulting Editor

Library of Congress Cataloging in Publication Data

Struble, George, 1932-
Assembler language programming.

Includes bibliographies and index.

1. Assembler language (Computer program language)
2. IBM 370 (Computer)—Programming. [. Title.
QA76.73.A8S87 1984 001.64'24 83-17912
ISBN 0-201-07815-5

Copyright © 1984, 1975, 1969 by Addison-Wesley Publishing Company, Inc. All rights re-
served. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States

of America. Published simultaneously in Canada.

DEFGHIJ-DO-898765 &



ASS
A N |
5

= M B L E
(S A G E
AMMING

The IBM System/370 Family

)




Assembler languages occupy a unique place in the computing world. Be-
cause most assembler language statements are symbolic of individual ma-
chine language instructions, assembler language programmers have the
full power of the computer at their disposal in a way that users of other lan-
guages do not. Because of the direct relationship between assembler lan-
guage and machine language, assembler language is used when high effi-
ciency of programs is needed, and especially in areas of application that
are so new and amorphous that existing problem-oriented languages are ill-
suited for describing the procedures to be followed. Assembler language
programming has particular advantages in character and bit-operation
tasks.

This is one of the reasons for studying assembler language. Another is
that assembler language is a great vehicle for learning the structure and or-
ganization of the computer. Beyond that, a study of how to program stan-
dard—and unusual—tasks in assembler language gives us new insight into
how the computer must do its tasks when we write our programs in higher-
level languages such as Pascal and FORTRAN. With that insight, we know
what is quick and what is time-consuming, and can make very good
guesses at the computer’s behavior in somewhat unusual situations. This
makes us much more effective as programmers in our higher-level lan-
guages.

This text couples the study of assembler language programming and
programming techniques to the study of a particular family of computers,
which we call the IBM System/370 family. This family includes not only the
several models of IBM System/370, and their predecessors the IBM Sys-
tem/360 models, but the IBM 4300 series, the IBM 3030 series, and the IBM
3080 series. These computers are all compatible in executing user pro-
grams written in assembler language. There are a few differences; almost



vi

Preface

all of the differences are new features that can be used on newer models
and we try to point these out. But we can take the programs written for the
IBM System/360 fifteen years ago and run them without change on all of the
newer models. This gives us some reason to expect that the assembler lan-
guage (and machine language) features we learn to use now will still be ap-
plicable several years from now.

The structure and organization of the IBM System/370 have become an
industry standard, and the same assembler language is also applicable to a
number of “‘plug-compatible’’ computers produced by other companies,
including Amdahl, Cambex, Control Data, IPL Systems, Magnuson, National
Advanced Systems (NAS), and Trilogy. This text is therefore also applicable
to the use of those computers, though there are some differences in the fea-
tures used by the operating systems, which we explore in Chapter 17.

Study of assembler language must, by the nature of the language, be
relative to some machine, and some particular machine, at that. The IBM
System/370 series is a good choice for two principal reasons: (1) computers
of the IBM System/370 family (including its plug-compatible competitors)
are in use by the thousands, so thousands of computer users will find a
study of the specifics of this computer immediately applicable; (2) the IBM
System/370 exemplifies features of many other current computers, so con-
cepts and techniques learned with respect to this computer will be applica-
ble to other computer systems as well. N

The aim of this text is therefore to introduce the detailed structure of the
IBM System/370 and its instruction repertoire, programming in assembler
language for this computer, and techniques useful in the applications of
computers, especially those more easily programmed in assembler lan-
guage than in higher-level languages.

It is assumed that you are already familiar to some extent with program-
ming, probably in FORTRAN or Pascal. The particular language of your pre-
vious exposure is unimportant; what matters is experience in analyzing a
problem, and in developing an algorithm for a computer solution. Many
basic concepts are reviewed or presented in a framework that supports my
development of further material, so with a basic background you should find
this book suitable for individual study.

The book is intended primarily for use as a class text, in a ‘“‘second”
course in computing (though a teacher who wishes to use the book as an in-
troductory text should be able to do so, with a reasonable amount of supple-
mentary explanation). It may be used in a course in assembler language
programming. It may also be used in conjunction with a more general or the-
oretical text on computer organization or information structures or as a
stand-alone text. There is more than enough material for a semester, and
sufficient opportunity for an instructor to omit or substitute other material.
The text is also flexible in that the order of presentation of material after
Chapter 11 can be rearranged at will, and parts of Chapter 12 can beé intro-
duced earlier without any difficulties.



Preface vii

The most frustrating problem for teachers—and students—of assem-
bler language for IBM System/370 is that a student must learn a fairly large
amount of information before submitting a first lab_exercise to the comput-
er. It is a problem inherent in teaching powerful and flexible systems. In this
edition we introduce two facilities that make the job easier for the student.
One is the ASSIST system, which is designed to be helpful to students with
easy input, output, data conversion, linkage, and debugging facilities, and
manages also to be significantly more efficient of computer time than the
standard OS. Both OS and DOS versions of the ASSIST system are available
to educational and commercial computer installations; for product and dis-
tribution information, write to

Program Librarian

214 Computer Building
Pennsylvania State University
University Park, Pa. 16802

The second facility new to this edition is CMS (Conversational Monitor Sys-
tem); CMS also is easier to use than the standard batch system, partly be-
cause it is interactive, but also because of some of its easy-to-use input,
output, and debugging facilities.

Also available (but too new to include in this book) is ASSIST/I, an inter-
active system that interpretively runs IBM System/370 family programs on a
variety of microcomputers and minicomputers. The ASSIST/I system is
complete with full-screen editor and interactive debugging; it is available for
IBM PC computers with MSDOS, UNIX systems, VAX VMS systems, and a
number of other systems. ASSIST/I, or more information about it, is avail-
able from

Overbeek Enterprises
P.O. Box 726
Elgin, 1ll. 60120

We are not comprehensive in our descriptions of either ASSIST or CMS,
but in Chapter 5 we introduce enough information about each so that stu-
dents can get started on their own programs. The second edition of this
text mentioned READATA and PRINT subroutines, and had an appendix on
linkage between assembler language and FORTRAN routines. Copies of
READATA and PRINT and the appendix are still available from me to instruc-
tors.

Chapter 1 introduces the structure of a computer, especially the struc-
tures of the IBM System/370 and the ways information is represented in
them.



viii

Preface

Chapter 2 is an introduction to the machine language of the IBM Sys-
tem/370, and Chapter 3 follows immediately with the introduction of assem-
bler language. Throughout the remainder of the book assembler language is
used, though you should understand the machine language produced by the
assembler language.

Chapter 4 begins the study of the characteristics and uses of individual
IBM System/370 instructions, with the binary integer arithmetic and infor-
mation move instructions.

Chapter 5 introduces a variety of topics—what they have in common is
that they should be sufficient to get you started on the computer. Definition
of constants and storage areas, assembler control statements, and register
conventions are important here. Chapter 5 also shows how to use ASSIST
and CMS.

Chapter 6 consolidates some of the Chapter 5 topics by discussing sub-
routine linkage in depth and introducing the machine language instructions
that perform data conversions. Portions of Chapters 5 and 6 may be omitted
or postponed, depending on what facilities are available to you.

Chapter 7 introduces control structures and their implementation in as-
sembler language. Our approach to structured programming is to write Pas-
cal-like pseudo-code structures in a standard form in remarks statements,
and then follow the pseudo-code structures quite closely in the assembler
language. We show easy and standard ways of implementing the structures
through assembler language; the result is quite readable programs, with the
added benefit that following the pseudo-code structures yields programs
with fewer bugs. Chapter 8 continues with control structures but adds ad-
dress modification as well.

Chapter 9 concentrates on debugging, showing debugging facilities of
the standard system, ASSIST, and CMS. It also includes a discussion of de-
bugging strategies, and some notes on programming methodology that may
help minimize the need for debugging.

Chapters 10 and 11 deal with byte (character) and bit operations. In
assembler language these functions are simple, direct, and efficient: this is
one of the areas in which the power of assembler language, as compared to
most other languages, is realized.

Chapter 12 introduces manipulation of data sets, both within a program
by means of the input and output macros, and external to the program by
means of job control statements. Basics of the OS operating systems are il-
lustrated and explained.

Chapters 13 and 14 introduce two other modes of arithmetic available
in the IBM System/370: floating point and decimal. These chapters should
help you to understand what your programs written in higher-level lan-
guages do.

Chapter 15 describes five sophisticated and powerful instructions:
Translate, Translate and Test, Edit, Edit and Mark, and Execute; these in-



Preface ix

structions are typical of efforts by computer manufacturers to extend the
standard instruction repertoire.

Chapter 16 introduces the facility for defining macros in assembler lan-
guage. This facility is really powerful, and probably the most intellectually
exciting in the book.

Chapter 17 introduces virtual storage concepts, program status word
formats and manipulation, input and output instructions and channel pro-
gramming, interrupt handling and the storage protection system—the
pieces of computer structure that are used by operating systems program-
mers, not applications programmers. The chapter is intended as an intro-
ductory survey to give the reader some understanding of a part of the com-
puter structure used only implicitly by applications programs; even a little
understanding can relieve anxiety and promote more efficient use of the
facilities of the operating system.

An important feature of the book is that it discusses a number of com-
mon information processing problems, introduces significant computing
techniques, and illustrates implementation of these techniques in assem-
bler language. Thus while you are learning to handle certain features of the
IBM System/370, you are also learning valuable techniques that are useful
in many situations. Among the technigues discussed are generation of
pseudo-random numbers, operations on linked lists, binary search, scatter
storage and hashing methods, and a sort-merge algorithm.

This book, then, describes thoroughly the instruction repertoire usable
by applications programmers of the IBM System/370. Functions reserved to
the operating system are introduced, because an applications programmer
needs some understanding of what lies behind supervisor functions, and be-
cause budding systems programmers must start somewhere too. However,
the functions used only in supervisor state are treated in much less detail
than the others, and some of the more specialized are not even mentioned.
Assembler language is introduced and used extensively, but several ad-
vanced features of the assembler language are not mentioned. Instructions
for use of facilities of the operating system are even less complete; users
must learn more details from appropriate IBM manuals and must get infor-
mation on the configuration in use at their own computing centers. | have
tried to follow the terminology of IBM manuals to facilitate transition from
this book to the manuals. It will be helpful if a good set of manuals is avail-
able to you for reference while you are studying this text.

I would like to express my deep appreciation to the many people who
contributed to the development of both the original and this new edition.
Most of the material, of course, is derived from various IBM manuals; the
IBM Corporation has been generous in allowing me to use excerpts from the
manuals listed in the bibliographies at the end of each chapter, and individu-
als within IBM have been encouraging and helpful in their explanations of
further points. Robert Heilman, John MacDonald, Thom Lane, Michael



Preface

Harrison, Tim Hagen, Norman Beck, Sally Browning, Gordon Ashby, Kevin
McCoy, Ed Rittenhouse, Jerzy Wilczinski, Darrell Jones, and Gary Bello
made valuable suggestions and criticisms. Sharon Burrowes, Jenny Brown,
Barbara Korando, and my daughters Jennifer and Laura did a masterful job
of typing the manuscript in its several editions.

Finally, | wish to acknowledge the contributions of users of the book
who have helped to debug and strengthen the ideas and presentation as
they endeavored to learn about assembler language and the IBM Sys-
tem/360 and 370 from preliminary versions and the first edition of this book.

Salem, Oregon G.W.S
March 1984



CHAPTER ]
INTRODUCTION TO COMPUTER
STRUCTURE: THE IBM SYSTEM/370

1.1 Decimal, Binary, and Hexadecimal Numbers 1

1.2 Subsystems of a Stored-program Digital Computer 8
1.3 Structure of the IBM System/370 18

1.4 Representation of Information 23

MAIN IDEAS 28

PROBLEMS FOR REVIEW AND IMAGINATION 29
REFERENCES 30

CHAPTER2 |
INTRODUCTION TO IBM
SYSTEM/370 MACHINE LANGUAGE

2.1 The Nature of Machine Language 31

2.2 Operand Addressing in Machine Language 32
2.3 Machine Language Instruction Formats 36
2.4 An Example of a Program Segment 41

MAIN IDEAS 43

PROBLEMS FOR REVIEW AND IMAGINATION 43
REFERENCE 44




xii Contents

CHAPTERS
INTRODUCTION TO
ASSEMBLER LANGUAGE

3.1 A First Look at Assembler Language 46

3.2 Format of an Assembler Language Program 47
3.3 An Example 49

3.4 Addressing of Operands in Assembler Language 54
MAIN IDEAS 61

PROBLEMS FOR REVIEW AND IMAGINATION 61
REFERENCES 63

INFORMATION MOVE AND
BINARY INTEGER ARTHMETIC

4.1 General Structure 64

4.2 Information Move Instructions 66

4.3 Binary Integer Add and Subtract Instructions 72
4.4 Binary Integer Multiplication 74

4.5 Binary Integer Division 78

4.6 The LM and STM Instructions 81

4.7 The LA Instruction 83

A4.8 Generation of Pseudo-random Numbers 85
MAIN IDEAS 88

PROBLEMS FOR REVIEW AND IMAGINATION 90

REFERENCES 91

[CHAPTERS |
WRITING A
COMPLETE PROGRAM

5.1 Introduction 93
5.2 Register Conventions 94
5.3 Definition of Constants in Assembler Language 95




Contents xiii

5.4 The DS (Define Storage) and EQU (Equate Symbol) Statements 104
5.5 Assembler Control Statements 106
5.8 Completing a Program with ASSIST Facilities 108

5.7 Running a Complete Program: Batch Mode and
Job Control Language 112

5.8 Running a Program under CMS 116

MAIN IDEAS 120

PROBLEMS FOR REVIEW AND IMAGINATION 121
REFERENCES 123

CONVERSIONS AND SUBROUTINES

6.1 Introduction 124

6.2 The BR and BALR Instructions 125

6.3 An Implied Base Register: The USING Pseudo-operation 126
6.4 Subroutine Implementation 130

6.5 Passing Parameters to a Subroutine 135

6.6 Number Conversions 138

6.7 Examples of Complete Subroutines: Pseudo-random
Number Generation 142

MAIN IDEAS 146

PROBLEMS FOR REVIEW AND IMAGINATION 147
REFERENCES 151

ELEMENTARY CONTROL
STRUCTURES

7.1 The Program Status Word and the Condition Code 153
7.2 Setting the Condition Code 153

7.3 The Compare Instructions 156

7.4 The BC and BCR Instructions 157

7.5 IF-THEN and IF-THEN-ELSE Instructions 159

7.6 Extended Mnemonics 161




Xiv Contents

7.7 Looping Structures 164

7.8 Example: Insertion in a Linked List 167

7.8 Style and Control Structure Summary 171
MAIN IDEAS 172

PROBLEMS FOR REVIEW AND IMAGINATION 173
REFERENCES 178

CHAPTER 8

LOOPING AND
ADDRESS MODIFICATION

81 The Anatomy of a Loop: Address Modification 179

8.2 Address Modification: Changing and Testing Contents
of a Base Register 184

8.3 Address Modification: Use of Index Registers 187
8.4 The BXH and BXLE Instructions 190

8.5 The Programming Process: A Sequential Search 195
8.6 The BCT and BCTR Instructions 197

8.7 Ordered Lists and Binary Search 199

MAIN IDEAS 203

PROBLEMS FOR REVIEW AND IMAGINATION 204
REFERENCES 207

CHAPTER 9

DEBUGGING

9.1 Exceptions and Interrupts 208
9.2 Indicative Dumps 214

9.3 Error Messages 216

9.4 Fuller Dumps 217

9.5 Advance Preparation 222
8.8 Partial Dumps 223

8.7 Trace Features 225




Contents XV

9.8 Interactive Debugging in CMS 226

8.9 A Last Few Hints on Programming and Debugging 230
MAIN IDEAS 232

PROBLEMS FOR REVIEW AND IMAGINATION 232
REFERENCES 233

CHARACTER OR BYTE
OPERATIONS

10.1 Byte Transfer or Move Instructions 234
10.2 Character Compare Operations 238

10.3 An Example: Searching for a Name 241
10.4 Control Sections 242

10.5 An Example: Character Set Conversion 244
10.8 An Example: Counting Digits 246

10.7 An Example: Generating a Symbol Table 247
MAIN IDEAS 254

PROBLEMS FOR REVIEW AND IMAGINATION 255

REFERENCES 257

BIT OPERATIONS

11.1 Logical Instructions: Arithmetic on Unsigned Numbers 258
11.2 Shift Instructions 260

11.3 An Example: Hexadecimal Conversion 267

11.4 Taking a Square Root 268

11.5 Logical Instructions: AND and OR 269

11.8 Generating Moves in Checkers 278

MAIN IDEAS 285

PROBLEMS FOR REVIEW AND IMAGINATION 285
REFERENCES 289




xvi

Contents

CHAPTERZI2 |
INPUT AND OUTPUT THROUGH THE

OPERATING SYSTEM

121

122
123
124
125
12.6
127

Basic Structure of Input and Output Processing 291
Organization of a Data Set 295

Buffering and Exit Options 299

Using QSAM Macros in a Program 302

Survey of Job Control Language 312

Examples of Specific Data-set Operations 321
Sorting by Merging 329

MAIN IDEAS 334
PROBLEMS FOR REVIEW AND IMAGINATION 336

REFERENCES 340

FLOATING-POINT ARITHMETIC

131

132
13.3
134
135
13.6
137
13.8
138

Representations of Floating-point Numbers 343
Floating-point Registers; Load and Store Instructions 345
Floating-point Add, Subtract, and Compare Instructions 350
Floating-point Multiply and Divide 353

Unnormalized Add and Subtract Operations 356
Exceptions and Interrupts 358

An Example: A Regression Calculation 359
Extended-precision Instructions 365

Conversions 367

MAIN IDEAS 371
PROBLEMS FOR REVIEW AND IMAGINATION 372
REFERENCES 376

CHAPTER 14

DECIMAL ARITHMETIC

14.1

Packed Decimal Representations: Internal and
Assembler Language 378



Contents xvii

14.2 General Structure of the Decimal Instruction Set 379
14.3 Add, Subtract, and Compare Instructions 380
14.4 Moving a Packed Decimal Number 382

14.5 Multiply and Divide Instructions 384

14.6 Exceptions 386

14.7 Examples 386

MAIN IDEAS 392

PROBLEMS FOR REVIEW AND IMAGINATION 393
REFERENCES 39

CHAPTER 15

TRANSLATE, EDIT, AND
EXECUTE INSTRUCTIONS

185.1 Translate Instructions 396
15.2 Editing 399

15.3 The EXecute Instruction 405
MAIN IDEAS 407

PROBLEMS FOR REVIEW AND IMAGINATION 408
REFERENCE 410

MACRO DEFINITION AND
CONDITIONAL ASSEMBLY

168.1 Outline of Facilities 412

16.2 Definition and Use of a Macro 413

16.3 Set Symbols, System Variable Symbols, and Attributes 418
16.4 Conditional Assembly 425

16.5 Substrings and Other Macro Features 429

MAIN IDEAS 431

PROBLEMS FOR REVIEW AND IMAGINATION 432
REFERENCES 435




