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Preface

In the last decade or so work in graph theory has centred on algorithmic
interests rather than upon existence or characterisation theorems. This
book reflects that change of emphasis and is intended to be an intro-
ductory text for undergraduates or for new postgraduate students.

The book is aimed primarily at computer scientists. For them graph
theory provides a useful analytical tool and algcrithmic interests are
bound to be uppermost. The text does, however, contain an element of
traditional material and it is quite likely that the needs of a wider audience,
including perhaps mathematicians and engineers, will be met. Hopefully,
enough of this material has been included to suggest the mathematical
richness of the field.

Prerequisites for an understanding of the text have been kept to a
minimum. It is essential however to have had some exposure to a high-
level, procedural and preferably recursive programming language, to be
familiar with elementary set notation and to be at ease with (for example,
inductive) theorem proving. Where more advanced concepts are required
the text is largely self-contained. This is true, for example, in the use of
linear programming and in the proofs of NP-completeness.

There is rather more material than would be required for a one-semester
course. It is possible to use the text for courses of more or of less difficulty,
or to select material as it appeals. For example an elementary course might
not include, amongst other material, that on branchings (in chapter 2),
minimum-cost flows (in chapter 4), maximum-weight matchings (in
chapter 5), postman problems (in chapter 6) and proofs of NP-completeness
(all of chapter 8). Whatever the choice of material, any course will in-
evitably reflect the main preoccupation of the text. This is to identify those
important problems in graph theory which have an efficient algorithmic
solution (that is, those whose time-complexity is polynomial in the problem
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size) and those which, it is thought, do not. In this endeavour the most
efficient of the known polynomial time algorithms have not necessarily
been described. These algorithms can require explanations that are roo
lengthy and may have difficult proofs of correctness. One such example is
graph planarity testing in linear-time. It has been thought preferable to go
for breadth of material and, where required, to provide references to more
difficult and stronger results. Nevertheless, a body of material and quite a
few results, which are not easily available elsewhere, have been presented
in elementary fashion.

The exercises which appear at the ends of chapters often extend or
motivate the material of the text. For this reason outlines of solutions are
invariably included. Some benefit can certainly be obtained by reading
these sections even if detailed solutions are not sought.

Thanks are due to Valerie Gladman for her cheerful typing of the manu-
script. Primary and secondary sources of material are referenced at the ends
of chapters. I gratefully acknowledge my debt to the authors of these works.
However, I claim sole responsibility for any obscurities and errors that
the text may contain,

A. M. Gibbons Warwick, January 1984
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1

lntroddcing graphs and algorithmic
complexity

In this chapter we introduce the basic language of graph theory and of
algorithmic complexity. These mainstreams of interest are brought together
in several examples of graph algorithms.

Most problems on graphs require a systematic traversal or search of the
graph. The actual method of traversal used can have advantageous struc-
tural characteristics which make an efficient solution possible. We illustrate
both this and the use of an efficient representation of a graph for compu-
tational purposes.

The definitions and concepts outlined here will serve as a foundation for
the material of later chapters.

11 Introducing graphs ‘

This section introduces the basic vocabulary of graph theory. The
subject contains an excess of non-standardised terminology. In the fol-
lowing paragraphs we introduce a relatively small number of widely used
definitions which will nevertheless meet our needs with very few later
additions.

Geometrically we define a graph to be a set of points (vertices) in space
which are interconnected by a set of lines (edges). For a graph G we denote

Fig. 1.1
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2 Introducing graphs and algorithmic complexity
the vertex-set by V and the edge-set by E and write G = (¥, E). Figure 1.1
shows a graph, G = ({vy, vs, ..., Ug}, {e1, €5, ..., €12})-

We shall denote the number of vertices in a graph by n = |V| and the
number of edges by | E|. If both n and | E| are finite, as we shall normally
presume to be the case, then the graph is said to be finite.

We can specify an edge by the two vertices (called its end-points) that it
connects. If the end-points of e are v; and v; then we write e = (v;, v;) or
e = (v;, v;). Thus an equivalent definition of the graph in figure 1.1 is:

G = (V, E), V = {v,, v, ..., Vp}

E = {(vly vz)v (vlr Us)v (Uz, Us)» (USs vS)’ (Ub 05)’ (04! vﬁ);
TN (g v2), (U5, V), (U, 7)), (v, V), (U, Dg), (Vg, Vg)}

If an edge e has v as an end-point, then we say that e is incident with v.
Also if (u, v) € E then u is said to be adjacent to v. For example, in figure 1.1
the edges ey, e; and e are incident with v; whick is adjacent to vy, v, and v,
We also say that two edges are adjacent if they have a common end-point.
In figure 1.1, for example, any pair of eg, ey, €;, and e,, are adjacent.

The degree of a vertex v, written d(v), is the number of edges incident
with v. In figure 1.1 we have d(v,) = d(vy) = d(vs) = d(vg) = 2, d(vs) =
d(vy) = d(vs) = d(ve) = 3 and d(v;) = 4. A vertex v for which d(v) = 0 is
called an isolated vertex. Our first theorem is a well-known one concerning
the vertex degrees of a graph.

Theorem 1.1. The number of-vertices of odd-degree in a finite graph is even.

Proof. If we add up the degrees of all the vertices of a graph then the result
must be twice the number of edges. This is because each edge contributes
once to the sum for each of its ends. Hence:

. Bdo) = 2:|E|

The right-hand side of this equation is an even number as is the contri-
bution to_the left-hand side from vertices of even-degree. Therefore the |
sum of the degrees of those vertices of odd-degree is even and the theorem
follows. u

A self-loop is an edge (u, v) for which ¥ = v. An example is e, in the
graph of figure 1.2(a). A parallel edge cannot be uniquely identified by
specifying its end-points only. In figure 1.2(a), e, is parallel to e;. In this
text we shall normally be concerned with simple graphs, that is, graphs
which contain no self-loops or parallel edges. Of course, every graph has
an underlying simple graph obtained by the removal of self-loops and

1 .
2 ik .
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parallel edges. Thus figure 1.2(b) shows the simple graph underlying figure
1.2(a). By the term multi-graph we mean a graph with parallel edges but
with no self-loops. From now on we shall employ the term graph to mean
a simple graph unless we explicitly say otherwise.

Fig. 1.2

(a) e ’ (b)
e, ‘
2 %

A graph for which every pair of distinct vertices defines an edge is called
a complete graph. The complete graph with » vertices is denoted by K.
Figure 1.3 shows K, and K. In a regular graph every vertex has the same
degree, if this is k then the graph is called k-regular. Notice that K, is
(n—1)-regular. Figure 1.4 shows two examples of 3-regular graphs (also
called cubic graphs) which, as a class, are important in colouring planar
maps as we shall see in a later chapter.

Fig. 1.3

K
A




4 Introducing graphs and algorithmic complexity

If it is possible to partition the vertices of a graph G into two subsets, ¥}
and ¥, such that every edge of G connects a vertex in V] to a vertex in ¥} then
G is said to be bipartite. Figure 1.5(a) and (b) shows two bipartite graphs.
If every vertex of V] is connected to every vertex of ¥, then G is said to be a
complete bipartite graph. In this case we denote the graph by K; ; where
[Vil = i and |W;| = j. Figure 1.5(b) shows K, ;. There is an obvious
generalisation of these definitions for bipartite graphs to k-partite graphs
where k is an integer greater than two.

Fig. 1.5

(a) F il; 1 ;[ (b) TE K3 Zf

Two graphs G, and G, are isomorphic if there is a one-to-one corre-
spondence between the vertices of G; and the vertices of G, such that the
number of edges joining any two vertices in G, is equal to the number of
edges joining the corresponding two vertices in G,. For example, figure
1.6 shows two graphs which are isor-norphic, each being a representation
of K3 3.

Fig. 1.6

arald

A (proper) subgraph of G is a graph obtainable by the removal of a
(non-zero) number of edges and/or vertices of G. The removal of a vertex
necessarily implies the removal of every edge incident with it, whereas the
removal of art edge does not remove a vertex although it may result in one
(or even two) isolated vertices. If we remove an edge e or a vertex v from G,
then the resulting graphs are respectively denoted by (G—e) and (G —v).
If H is a subgraph of G then G is called a supergraph of H and we write
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H < G. A subgraph of G induced by a subset of its vertices, ¥’ = V, is the
graph consisting of ¥’ and those edges of G with both end-points in V.

A path from v, to v; is a sequence P = vy, e, vy, €y, ..., €;_4,0; Of alter-
nating vertices and edges such that for 1 < j < /, e; is incident with v; and
v;41- If v; = v; then P is said to be a cycle or a circuit. In a simple graph a
path or a cycle v;, e, v, €y, ..., €;_;, v; can be more simply specified by the
sequence of vertices vy, vy, ..., v;. If in a path each vertex only appears once,
then the sequence is called a simple path. If each vertex appears once except
that v, = v; then P is a simple circuit. The length of a path or a cycle is the
number of edges it contains. Two paths are edge-disjoint if they do not have
an edge in common.

Two vertices v; and v; are connected if there is a path from v; to v;. By
convention, every vertex is connected to itself. Connection is an equi-
valence relation (see problem 1.9) on the vertex set of a graph which
partitions it into subsets V, ¥, ..., ¥;. A pair of vertices are connected if
and only if they belong to the same subset of the partition. The subgraphs
induced in turn by the subsets ¥}, Vs, ..., ¥}, are called the components of the
graph. A connected graph has only one component, otherwise it is dis-
connected. Thus the graph of figure 1.1 is connected whilst that of figure 1.9
has two components.

A spanning subgraph of a connected graph G is a subgraph of G obtained
by removing edges only and such that any pair of vertices remain connected.

Let H be a connected graph or a component. If the removal of a vertex v
disconnects H, then v is said to be an articulation point. For example, in
figure 1.1 vg, v; and v, are all articulation points. If H contains no articu-
lation point then H is a block, sometimes called a 2-connected graph or
component. If H contains an edge ¢, such that its removal will disconnect H,
then e is said to be a cut-edge. Thus in figure 1.1 ¢, is a cut-edge. The end-
points of a cut-edge are usually articulation points.

A graph with one or more articulation points is also called a separable
graph. This refers to the fact that the blocks of a separable graph can be
identified by disconnecting the graph at each articulation point in_turn in
such a way that each separated part of the graph retains a copy of the
articulation point. For example, figure 1.7 shows the separated parts (or
blocks) of the graph depicted in figure 1.1. Clearly, any graph is the union
of its blocks. _

In some applications it is natural to assign a direction to each edge of a
graph. Thus in a diagram of the graph each edge is represented by an
arrow. A graph augmented in this way is called a directed graph or a
digraph. An example is shown in figure 1.8. If e = (v, v;) is an edge of a
digraph then the order of v; and v; becomes significant. The edge e is under-
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Vg ys
Vs Vs
Vs Vs Vy Ve
Vs Ys

Fig. 1.7

"

¥y
€15 Q €ye
" e — Yy
' €34

stood to be directed from the first vertex v; to the second vertex v;. Thusif
a digraph contains the edge (v;, v;) then it may or it may not contain the
edge (vj, v;). The directed edge (v;, v;) is said to be dncident from v; and
incident 10 v;. For the vertex v, the out-degree d*(y) and the in-degree d—(v)
are, respectively, the number of edges incident from v and the number of
edges incident to v. A symmetric digraph is a digraph in which for every
edge (v;, v;) there is an edge (vj, v;). A digraph is balanced if for every
vertex v, d*(v) = d=(v).

Of course, every digraph has an underlying (undirected simple) graph
obtained by deleting the edge directions. Thus figure 1.9 shows this graph
for the digraph of figure 1.8. As defined earlier, a path (or circuit) in a
corresponding undirected graph is a sequence S = vy, €;, U3, €y, ..., V;_3, €;,
of vertices and edges. In the associated digraph this sequence may be such

that for all j, 1 < j < i, e; is incident from v; and incident to v; ;. In thi§

case S is said to be a directed path (or circuit). Otherwise it is an undirected
path (or circuit). Thus in figure 1.8 (v,, €;, U3, €, U5, €4, Uy, €3, Vs, €33, Ug) iS AN

Fig.1.9
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undirected non-simple path, while (v, e;, vy, g, vg, €g, v;)isasimpledirected
circuit. Because in a digraph we can define two different types of paths we
can also define two different types of connectedness. Two vertices, v, and
vy, are said to be strongly connected if there is a directed path from v, to v,
and a directed path from v, to v,. If v, and v, are not strongly connected but
are connected in the corresponding undirected graph, then v, and v, are
said to be weakly connected.

Both strong connection and weak connection are equivalence relations
(see problem 1.9) on the vertex set of a digraph. Of course weak connection
partitions the vertices in precisely the same way that connection would
partition the vertices of the corresponding undirected graph. Thus for
the graph in figure 1.8, weak connection partitions the v-rtices into the
two subsets {v;, vy, v5, vy, Vg, Vg} and {0y, vg, vg). The subgraphs induced by
these subsets are calléd the weakly connected componments of the digraph.
On the other hand strong connection partitions the vertices of this graph
into the subsets {vy, vy, g}, {t3, V4, Vs, {4} and {vg, vy}. Each of these subsets
induces a strongly connected component of the digraph. Notice that each
edge of a digraph belongs to some weakly connected component but that
it does not necessarily belong to a strongly connected component.

We now briefly introduce an important class of graphs called trees.
A treeis a connected graph containing no circuits. A forest is a graph whose
components (one or more in number) are trees. An owf-free is a directed
tree in which precisely one vertex has zero in-degree. Similarly, an in-tree
is a directed tree in which precisely one vertex has zero out-degree. A tree
in which one vertex, the root, is distinguished, is called a rooted-tree. In a
rooted-tree any vertex of degree one, unless it is the root, is called a /eaf.
As we shall see in theorem 1.2 there is precisely one path between any two
vertices of a tree. The depth or level of a vertex in a rooted-tree is the
number of edges in the path from the root to that vertex.If (u, v) is an edge
of a rooted-tree such that u lies on the path from the root to v, then u is
said to be the father of v and v is the son of u. An ancestor of u is any vertex
of the path from u to the root of the tree. A proper ancestor of u is any
ancestor of u excluding w. Similarly, if u is an ancestor of v, then v is a
descendant of u. A proper descendant of u excludes u. Finally, a binary tree
is a rooted-tree in which every vertex, unless it is a leaf, has two sons.

Theorem 1.2. If T is a tree with n vertices, then
(a) Any two vertices of T are connected by precisely one path.
(b) For any edge e, not in 7, but connecting two vertices of 7, the
graph (T+ e) contains exactly one circuit.
(¢) T has (n—1) edges.



8 Introducing graphs and algorithmic complexity

Proof. (a) Tis connected and so there exists at least one path between any
two vertices # and v. Suppose that two distinct paths, P, and P, exist
between u and v. Following these paths from u to v, let them first diverge
at u’ and first converge at v'. That section of P, from «’ to v’ followed by
that section of P, from v’ to «’ must form a circuit. By definition, T contains
no circuit and so we have a contradiction.

(b) Let e = (u, v). According to (a) there is precxsely one path P from
u to v within 7. The addition of e therefore creates exactly one circuit
(P+e).

(¢) Proof is by induction on the number of verticesnin T. If n = 1 or 2
then, trivially, the number of edges in T"is (n—1). We assume that the
statement is true for all trees with less than » vertices. Let T have n vertices.
There must be a vertex of degree one contained in 7, otherwise we could
trace a circuit by following any path from vertex to vertex entering each
vertex by one edge and leaving by another. If we remove a vertex of degree
one, v, from T we neither disconnect T or create a circuit. Hence (7'—0) is
a tree with (n— 1) vertices. By the induction hypothesis (I"—v) has (n—2)
edges. Hence replacing v provides T with (n—1) edges. |

We complete our catalogue of definitions by introducing weighted graphs.
In some applications it is natural to assign a number to each edge of a
graph. For any edge e, this number is written w(e) and is called its weight.
Naturally the graph in question is called a weighted graph. The weight of a
(sub)graph is equal to the sum of the weights of its edges. Often of interest
here is a path (or cycle) in which case it may be appropriate to refer to the
length rather than the weight of the path (or cycle). This should not be
confused with the length of a path (or cycle) in an unweighted graph which
we defined earlier.

In the following section we introduce the other central interest of this
text, namely, that of algorithmic complexity.

1.2 Introducing algorithmic complexity

Although fairly brief, this introduction to algorithmic efficiency
will provide a sufficient basis for all but the final chapter of this text. That
chapter provides further insight into what is introduced here, and, in
particular, it explores an important class of intractable problems.

Our interest in efficiency is particularly concerned with what is called the
time-complexity of algorithms. Since the analogous concept of space-
complexity will be of little interest to us, we can use the term complexity in
an unambiguous way. The complexity of an algorithm is simply the
number of computational steps that it takes to transform the input data to
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the result of a computation. Generally this is a function of the quantity of
the input data, commonly called the problem size. For graph algorithms
the problem size is determined by one or perhaps both of the variables n
and |E|.

For a problem size s, we denote the complexity of a graph algorithm
A by C,(s), dropping the subscript A when no ambiguity will arise. C,(s)
may vary significantly if algorithm A4 is applied to structurally different
graphs but which are nevertheless of the same size. We therefore need to
be more specific in our definition. In this text we take C,(s) to mean the
worst-case complexity. Namely, to be the maximum number, over all input
sizes s, of computational steps required for the execution of algorithm A.
Other definitions can be used. For example, the expected time-complexity
is the average, over all input sizes s, of the number of computaﬁonal steps
required.

The complexities of two algorithms for the same problem will in general
differ. Let 4, and 4, be two such algorithms and suppose that C, (n) = in®
and that C,(n) = 5n. Then 4, is faster than 4, for all problem sizes
n > 10. In fact whatever had been the (finite and positive) coefficients of
n? and of » in these expressions, A, would be faster than A, for all n
greater than some value, n, say. The reason, of course, is that the asymptotic
growth, as the problem size tends to infinity, of n? is greater than that of n.
The complexity of 4, is said to be of lower order than that of 4,. The idea
of the order of a function is important in complexity theory and we now
need to define and to further illustrate it.

Given two functions F and G whose domain is the natural numbers, we
say that the order of F is lower than or equal to the order of G provided
that:

F(n) < K-G(n)

for all» > ngy, where K and n, are two positive constants. If the order of F
is lower than or is equal to the order of G then we write F = O(G) or we
say that Fis O(G). F and G are of the same order provided thaf F = O(G)
and that G = O(F). It is occasionally convenient to write 8(G) to specify
the set of all functions which are of the same order as G. Although 6(G)
is defined to be a set, we conventionally write F = 6(G) to mean F e 8(G).
Illustrating these definitions, we see that 5» is O(3#2) but that 5n # 6(3n2)
because 472 is not O(5n). Note also that low order terms of a function can
be ignored in determining the overall order. Thus the polynomial
(3n®+ 6n%+n+6) is O(3n®). It is.obviously convenient when specifying the
order of a function to describe it in terms of the simplest representative
function. Thus (3n3+ 6n?) is O(n®) and 4n? is O(n?).

When comparing two functions in terms of order, it is often convenient



