Computer
Architecture-

Design and performance

Computer
Architecture

Design and performance

Barry Wilkinson

Department of Computer Science
University of North Carolin,

Il |I||

Prentice Hall
New York London Toronto Sydney Tokyo Singapore

First published 1991 by

Prentice Hall International (UK) Ltd
66 Wood Lane End, Hemel Hempstead
Hertfordshire HP2 4RG

A division of ~

Simon & Schuster International Group

© Prentice Hall International (UK) Ltd, 1991

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
permission, in writing, from the publisher.

For permission within the United States of America
contact Prentice Hall Inc., Egglewood Cliffs, NJ 07632.

Typeset in 10/12pt Times with Courier

Printed in Great Britain at .
the University Press, Cambridge

Library of Congress Cataloging-in-Publishing Data

Wilkinson, Barry.
Computer architecture: design and performance/by Barry
Wilkinson
p. cm..
Includes biblingraphical references and index.
ISBN 0-13-173899-2. — ISBN 0-13-173907-7 (pbk.)

1. Computér architecture. 1. Title.
QA76.9.A73W54 1991 ~)
004.2'2—dc20 90-7953

CIP

British Library Cataloguing in Publication Data

Wilkinson, Barry /947—-
Computer architecture: design and performance.
1. High performance computer systems. Design
I. Title
004.22

ISBN 0-13-173899-2
ISBN 0-13-173907-7 pbk

1 2 3 45 94 93 92 91 90

Preface

Although computer systems employ a range of performance-improving techniques,
intense effort to improve present performance and to develop completely new types
of computer systems with this improved performance continues. Many design
techniques involve the use of parallelism, in which more than one operation is
performed simultaneously. Parallelism can be achieved by using multiple functional
units at various levels within the computer system. This book is concerned with -
design techniques to improve the performance of computer systems, and mostly with
those techniques involving the use of parallelism.

The book is divided into three parts. In Part I, the fundamental methods to
improve the performance of computer systems are discusséd; in Part II, multi-
processor systems using shared memory are examined in detail and in Part III,
computer systems not using shared memory are examined; these are often suitable
for VLSI fabrication. Dividing the book into parts consisting of closely related
groups of chapters helps delineate the subject matter.

Chapter 1 begins with an introduction to computer systems, microprocessor
systems and the scope for improved performance. The chapter introduces the topics
dealt with in detail in the subsequent chapters, in particular, parallelism within the
processor, parallelism in the memory system, management of the memory for
improved performance and multiprocessor systems. Chapters 2 and 3 concentrate
upon memory management — Chapter 2 on main memory/secondary memory manage-
ment and Chapter 3 on processor/high speed buffer (cache) memory management.
The importance of cache memory has resulted in a full chapter on the subject, rather
than a small section combined with main memory/secondary memory as almost
always found elsewhere. Similarly, Chapter 4 deals exclusively with pipelining as
applied within a processor, this being the basic technique for parallelism within a
processor. Scope for overall improved performance exists when choosing the actual
instructions to implement in the instruction set. In Chapter 5, the concept of the so-
called reduced instruction set computer (RISC),; which has a very limited number of
instructions and is used predominantly for register-to-register operations, is discussed.

Chapter 6, the first chapter in Part II, introduces the design of shared memory

xiii

xiv Preface

multiprocessor systems, including a segtion on programming shared memory multi-
processor systems. Chapter 7 concentrates upon the design of a single bus multi-
processor system and its variant (system/local bus systems); the bus arbitration logic
is” given substantial treatment. Chapter 8 considers single stage and multistage
interconnection networks for linking together processors and memory in a shared
memory multiprocessor system. This chapter presents bandwidth analysis of cross-bar -
. switch, multiple bus and multistage networks, including overlapping connectivity
networks. ‘

Chapter 9, the first chapter . Part III, presents multiprocessor systems having
local memory only. Message-passing concepts and architectures are described and
the transputer is outlined, together with its language. Occam. Chapter 10 is devoted
to the dataflow technique, used in a variety of applications. Dataflow languages
are presented and a short summary is given at the end of the chapter.

The text can serve as a course text for senior level/graduate computer science,
computer engineering or electrical engineering courses in computer architecture and
multiprocessor system design.. The text should also appeal to design engineers
working on 16-/32-bit microprocessor and multiprocessor applications. The material
presented is a natural extension to material in introductory computer organization/
computer architecture courses, and the book can be used in a variety of ways.
Material from Chapters 1 to 6 could be used for a senior computer architecture
course, whereas for a course on multiprocessor systems, Chapters 6 to 10 could be
studied in detail. Alternatively, for a computer architecture course with greater
scope, material could be selected from all or most chapters, though generally from
the first parts of sections. It is assumed that the reader has a basic knowledge of
logic design, computer organization and computer architecture. Exposure to computer
programming languages, both high level programming languages and low level
microprocessor assembly languages, is also assumed.

I would like to record my appreciation to Andrew Binnie of Prentice Hall, who
helped me start the project, and to Helen Martin, also of Prentice Hall, for her support
throughout the preparation of the manuscript. Special thanks are extended to my
students in the graduate courses CPGR 6182, CSCI 5041 and CSCI 5080, at the
University of North Carolina, Charlotte, who, between 1988 and 1990, helped me
“classroom-test” the material; this process substantially improved the manuscript. 1
should also like to thank two anonymous reviewers who made constructive and
helpful comments.

Barry Wilkinson
University of North Carolina
Charlotte

Contents

Preface xiii

Part I Computer design techniques 1
1 Computer systems 3
1.1 The stored program computer 3
1.1.1 Concept 3

1.1.2 Improvements in performance 10

1.2 Microprocessor systems N . 12
1.2.1 Development 12

1.2.2 Microprocessor architecture 14

1.3 Architectural developments 16
1.3.1 General 16

1.3.2 Processor functions 16

1.3.3 Memory hierarchy " 18

1.3.4 Processor—memory interface 19

1.3.5 Multiple processor systems : 22

1.3.6 Performance and cost 24

2 Memory management 25
2.1 Memory management schemes 25
2.2 Paging - 27
2.2.1 General ’ 27

2.2.2 Address translation 32

2.2.3 Translation look-aside buffers 36

2.2.4 Page size 38

2.2.5 Multilevel page mapping 39

2.3 Replacement algorithms 41

2.3.1 General 41

vii

viii Contents

A

24

2.3.2 Random replacement algorithm

2.3.3 First-in first-out replacement algorithm
2.3.4 Clock replacement algorithm

2.3.5 Least recently used replacement algorithm
2.3.6 Working set replacement algorithm

2.3.7 Performance and cost

Segmentation

2.4.1 General

2.4.2 Paged segmentation

2.4.3 8086/286/386 segmentation

‘Problems

3 Cache memory systems

3.1

3.2

3.3

3.4

3.7
3.8

Cache memory

3.1.1 Operation

3.1.2 Hit ratio

Cache memory organizations

3.2.1 Direct mapping

3.2.2 Fully associative mapping

3.2.3 Set-associative mapping

3.2.4 Sector mapping

Fetch and write mechanisms

3.3.1 Fetch policy

3.3.2 Write operations

3.3.3 Write-through mechanism

3.3.4 Write-back mechanism

Replacement policy

3.4.1 Objectives and constraints

3.4.2 Random replacement algorithm

3.4.3 First-in first-out replacement algorithm
3.4.4 Least recently used algorithm for a cache
Cache performance

Virtual memory systems with cache memory

3.6.1 Addressing cache with real addresses
3.6.2 Addressing cache with virtual addresses
3.6.3 Access time

Disk caches o
Caches in multiprocessor systems

Problems

43

45
45
47
49
51
51
55
57

61
64

64
64
67
68
68
7
73
74
75
75
76
77
80
81
81
82
82
82
86

90
90
91
93
94
95

99

4 Pipelined systems

4.1

4.2

4.3

4.4

4.5

Overlap and pipelining

4.1.1 Technique

4.1.2 Pipeline data transfer

4.1.3 Performance and cost
Instruction overlap and pipelines
4.2.1 Instruction fetch/execute overlap
4.2.2 Branch instructions

4.2.3 Data dependencies

4.2.4 Internal forwarding

4.2.5 Multistreaming

Arithmetic processing pipelines
4.3.1 General

4.3.2 Fixed point arithmetic pipelines
4.3.3 Floating point arithmetic pipelines
Logical design of pipelines

4.4.1 Reservation tables

4.4.2 Pipeline scheduling and control
Pipelining in vector computers

Problems

5 Reduced instruction set computers

5.1

5.2

5.3

5.4

Complex instruction set computers (CISCs)
5.1.1 Characteristics

5.1.2 Instruction usage and encoding

Reduced instruction set computers (RISCs)
5.2.1 Design philosophy

5.2.2 RISC characteristics

RISC examples

5.3.1 IBM 801

5.3.2 Early university research prototypes — RISC I/II and MIPS
5.3.3 A commercial RISC - MC88100

5.3.4 The Inmos transputer

Concluding comments on RISCs

Problems

Contents ix
102

102
102
103
105
107
107
111
117
121
122
123
123
124
127
130
130
133
138

140
144

144
144
146
148
148
150
153
153
156
160
165
166

167

x Contents

Part Il Shared memory multiprocessor systems

6 Multiprocessor systems and programming

6.4

6.5

6.6

General

Multiprocessor classification
6.2.1 Flynn's classification
6.2.2 Other classitications

3 Array computers

6.3.1 General architecture

6.3.2 Features of some array computers

6.3.3 Bit-organized array computers

General purpose (MIMD) multiprocessor systems
6.4.1 Architectures

6.4.2 Potential for increased speed

Programming multiprocessor systems

6.5.1 Concurrent processes

6.5.2 Explicit parallelism

6.5.3 Implicit parallelism

Mechanisms for handling concurrent processes
6.6.1 Critical sections ’

6.6.2 Locks 7
6.6.3 Semaphores

Problems

7 Single bus multiprocessor systems

7.1

7.2

7.3

7.4
T3

Sharing a bus

7.1.1 General

7.1.2 Bus request and grant signals
7.1.3 Multiple bus requests
Priority schemes

7.2.1 Parallel priority schemes
7.2.2 Serial priority schemes

7.2.3 Additional mechanisms in serial and parallel priority schemes
7.2.4 Polling schemes
Performance analysis

7.3.1 Bandwidth and execution time
7.3.2 Access time

System and local buses

Coprocessors
7.5.1 Arithmetic coprocessors
7.5.2 Input/output and other coprocessors

Problems

169
171

171

173
173
175
175
175
177
180
182
182
188
193
193
194
199
203
203
203
207

210
213

213
213
215
216
218
218
227
234
235
237
237
240
241

243
243
247
248

8 Interconnection networks

8.1
8.2

8.3

8.4

8.5

8.6

Multiple bus multiprocessor systems

Cross-bar switch multiprocessor.systems
8.2.1 Architecture

8.2.2 Modes of operation and examples
Bandwidth analysis

8.3.1 Methods and assumptions

8.3.2 Bandwidth of cross-bar switch
8.3.3 Bandwidth of multiple bus systems
Dynamic interconnection networks
8.4.1 General

8.4.2 Single stage networks

8.4.3 Multistage networks

8.4.4 Bandwidth of multistage networks
8.4.5 Hot spots

Overlapping connectivity networks
8.5.1 Overlapping cross-bar switch networks
8.5.2 Overlapping multiple bus networks
Static interconnection networks

8.6.1 General

8.6.2 Exhaustive static interconnections
8.6.3 Limited static interconnections
8.6.4 Evaluation of static networks

Problems

Part 11l Multiprocessor systems without

9 Message-passing multiprocessor systems

9.1

9.2

9.3

9.4

9.5

shared memory

General
9.1.1 Architecture
9.1.2 Communication paths

Programming

9.2.1 Message-passing constructs and routines

9.2.2 Synchronization and process structure
Message-passing system examples

9.3.1 Cosmic Cube

9.3.2 Intel iPSC system

Transputer

9.4.1 Philosophy

9.4.2 Processor architecture

Occam

9.5.1 Structure

Contents xi

250

250

252
252
253
256

256 .

257
260
262
262
263
263
270
273
275
276
279
282
282
282
282
287
290

293
295

295
295
298
301
301
304
308
308
309
311
311
312
314
314

X

10

Contents

9.5.2 Data types

9.5.3 Data transfer statéments

9.5.4 Sequential, parallel and alternative processes
9.5.5 Repetitive processes

9.5.6 Conditional processes

9.5.7 Replicators

9.5.8 Other features

Problems
Multiprocessor systems using the dataflow mechanism

10.1 General
10.2 Dataflow computational model
10.3 Dataflow systems

10.3.1 Static dataflow

10.3.2 Dynamic dataflow

10.3.3 VLSI dataflow structures
10.3.4 Dataflow languages

10.4 Macrodataflow
10.4.1 General
10.4.2 Macrodataflow architectures

10.5 Summary and other directions
Problems

References and further reading

Index

315
316
317
320
321
323
324

325
329

329
330
334
334
337

342
344

349
349
350

353
354

357

366

Computer v
design

techniques

CHAPTER
Computer systems

In this chapter, the basic operation of the traditional stored program digital computer
and microprocessor implementation are reviewed. The limitations of the single
processor computer system are outlined and methods to improve the performance
are suggested. A general introduction to one of the fundamental techniques of
increasing performance — the introduction of separate functional units operating
concurrently within the system — is also given.

1.1 The stored program computer

1.1.1 Concept it

The computer system in which operations are encoded in binary, stored in a memory
and performed in a defined sequence is known as a stored program computer. Most
computer systems presently available are stored program computers. The concept of
a computer which executes a sequence of steps to perform a particular computation
can be traced back over 100 years to the mechanical decimal computing machines
proposed and partially constructed by Charles Babbage. Babbage’s Analytical Engine
of 1834 contained program and data input (punched cards), memory (mechanical),
a central processing unit (mechanical with decimal arithmetic) and output devices
(printed output or punched cards) — all the key features of a modern computer
system. However, a complete, large scale working machine could not be finished
with the available mechanical technology and Babbage’s work seems to have been
largely ignored for 100 years, until electronic circuits, which were developed in
the mid-194{ s, made the concept viable.

The true binary programmable electronic computers began to be developed by
several groups in the mid-1940s, notably von Neumann and his colleagues in the
United States; stored program computers are often called von Neumann computers,
after his work. (Some pioneering work was done by Zuse in Germany during the
1930s and 1940s, but this work was not widely known at the time.) Duriag the

3

4 Computer design techniques

1940s, immense development of the stored program computer took place and the
basis of complex modern computing systems was created. However, there are
alternative computing structures with stored instructions which are not executed in a
sequence related to the stored sequence (e.g. dataflow computers, which are described
in Chapter 10) or which may not even have instructions stored in memory at all
(e.g. neural computers).

The basic vory Neumann stored program computer has:

1. A memory used for holding both instructions and the data required by those
instructions.

2. A control unit for fetching the instructions from memory.

An arithmetic processor for performing the specified operations.

4. Input/output mechanisms and peripheral devices for transferring data to and
from the system.

w

The control unit and the arithmetic processor of a stored program computer are
normally combined into a central processing unit (CPU), which results in the general
arrangement shown in Figure 1.1. Binary representation is used throughout for the
number representation and arithmetic. and corresponding Boolean values are used
for logical operations and devices. Thus, only two voltages or states are needed to
represent each digit (0 or 1). Muitiple valued representation and logic have been,
and are still being, investigated. '

The instructions being executed (or about to be executed) and their associated
data are held in the main memory. This is organized such that each binary word is
stored in a location identified by a number called an address. Memory addresses are
allocated in strict sequence, with consecutive memory locations given consecutive

Output device(s)

Input device(s)
.] y

Input Output

intedaqe(s) (pnmr;\er;'mﬂ?{r‘ym ory) interfaces(s)

&

Central
ing
unit (CPU)

Figure 1.1 Stored program digital computer

Computer systems 5

addresses. Main memory must access individual storage locations-in any order and
at very high speed; such memory is known as random access memory (RAM) and is
essential for the main memory of the system.

There is usually additional memory, known as secondary memory or backing
store, provided to extend the capacity of the memory system more economically
than when main memory alone is used. Main memory usually consists of semi-
conductor memory and is more expensive per bit than secondary memory, which
usually consists of magnetic memory. However, magnetic secondary memory is not
capable of providing the required high speed of data transfer, nor can it locate
individual storage locations in a random order at high speed (i.e. it is not truely
random access memory).

Using the same memory for data and instructions is a key feature of the von
Neumann stored program computer. However, having data memory and program
memory separated, with'separate transfer paths between the memory and the processor,
is possible. This scheme is occasionally called the Harvard architecture. The
Harvard architecture may simplify memory read/write méchanisms (sec Chapter 3),
particularly as programs are normally only read during execution, while data might
be read or altered. Also, data 'and unrelated instructions can be brought into the
processor simultaneously with separate memories. However, using one memory tc
hold:both the program and the associated data gives more efficient use of memory,
and it is usual for the bulk of the main memory in a computer system to hcld both.
The early idea that stored instructions could be altered during execution was quick!
abandoned with the introduction of other methods of modifying instruction execution.

The (central) processor has a number of internal registers tor holding specific
operands used in the computation, other numbers, addresses and control information.
The exact allocation of registers is dependent upon the design of the processor.
However, certain registers are always present. The program counter (PC), also called
the instruction pointer (IP), is an internal register holding the address of the next
instruction to be executed. The contents of the PC are usually incremented each time
an instruction word has been read from memory in preparation for the next instruction
word, which is often in the next location. A stack pointer register holds the address of
the “top” location of the stack. The stack is a set of locations, reserved in memory,
which holds return addresses and other parameters of subroutines.

A set of general purpose registers or sets of data registers and address registers
are usually provided (registers holding data operands and addresses pointing to
memory locations). In many instances these registers can be accessed more quickly
than main memory locations and hence can achieve a higher computational speed.

The binary encoded instructions are known as machine instructions. The operations
specified in the machine instructions are normally reduced to simple operations,
such as arithmetic operations, to provide the greatest flexibility. Arithmetic and
other simple operations operate on one or two operands, and produce a numeric
result. More complex operations are created from a sequence of simple instructions
by the user. From a fixed set of machine instructions available in the computer (the
instruction set) the user selects instructions to perform a particular computation.

6 Computer design techniques

The list of instructions selected is called a computer program. The selection is done
by a programmer. The program is stored in the memory and, when the system is
ready, each machine instruction is read from (main) memory and executed.

Each machine instruction needs to specify the operation to be performed, e.g.
addition, subtraction, etc. The operands also need to be specified, either explicitly in
the instrugtion or implicitly by the operation. Often, each operand is specified in the
instruction by giving the address of the location holding it. This results in a general
instruction format having three addresses:

1. Address of the first operand.
2. Address of the second operand.
3. Storage address for the result of the operation.

A further address could be included, that of the next instruction to be executed. This
is the four-address instruction format. The EDVAC computer, which was developed
in the 1940s, used a four-address instruction format (Hayes, 1988) and this format
has been retained in some microprogrammed control units, but the fourth address is

" always eliminated for machine instructions. This results in a three-address instruction
format by arranging that the next instruction to be executed is immediately following
the current instruction in memory. It is then necessary to provide an alternative
method of specifying non-sequential instructions, normally by including instructions
in the instruction set which alter the subsequent execution sequence, sometimes
under specific conditions.

The third address can be eliminated to obtain the two-address instruction format
by always placing the result of arithmetic or logic operations in the location where
the first operand was held; this overwrites the first operand. The second address can
be eliminated to obtain the one-address instruction format by having only one place
for the first operand and result. This location, which would be within the processor
itself rather than in the memory, is known as an accumulator, because it accumulates
results. However, having only one location for one of the operands and for the
subsequent result is rather limiting, and a small group of registers within the
processor can be provided, as selected by a small field in the instruction; the
corresponding instruction format is the one-and-a-half-address instruction format or
register type. All the addresses can be eliminated to obtain the zero-address
instruction format, by using two known locations for the operands. These locations
are specified as the first and second locations of a group of locations known as a
stack. The various formats are shown in Figure 1.2. The one-and-a-half- or two-
address formats are mostly used, though there are examples of three-address
processors, e.g. the AT&T WE3210 processor.

Various methods (addressing modes) can be used to identify the locations of the
operands. Five different methods are commonly incorporated into tk instruction
set:

