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Preface

As a subfield of mathematics, matrix theory continues to enjoy a renais-
sance that has accelerated during the past decade, though its roots may be
traced much further back. This is due in part to stimulation from a variety
of applications and to the considerable interplay with other parts of mathe-
matics, but also to a great increase in the number and vitality of specialists
in the field. As a result, the once popular misconception that the subject has
been fully researched has been largely dispelled. The interest on the part of
the American Mathematical Society and the approximately 140 participants
in the Short Course (at the January 1989 Phoenix Meeting) on which this
volume is based is a reflection of this change. The steady growth in qual-
ity and volume of the subject’s three principal journals, Linear Algebra and
its Applications, Linear and Multilinear Algebra, and the SIAM Journal on
Matrix Analysis and Applications is another. Approximately 500 different
authors have published in one of these three journals in the last two years.
Geographically, strong research centers in matrix theory have developed re-
cently in Portugal and Spain, Israel, the Netherlands, Belgium, and Hong
Kong.

The purpose of the Short Course was to present a sample of the ways in
which modern matrix theory is stimulated by its interplay with other subjects.
Though the course was limited to seven speakers, the “other subjects” repre-
sented included combinatorics, probability theory, statistics, operator theory
and control theory, algebraic coding theory, partial differential equations, and
analytic function theory. Among other important examples, numerical anal-
ysis, optimization, physics and economics are, unfortunately, at most lightly
touched. There is no limit to the specific examples that might be cited.

One of the ingredients in the recent vitality of matrix theory is the va-
riety of points of view and tools brought to the subject by researchers in
different areas. This is responsible for a number of important trends in cur-
rent research. For example, the notion of majorization (mentioned in the
talk by Olkin) has become pervasive in a historically brief period of time.
The trend away from the “basis-free” point of view is illustrated by work
in combinatorial matrix theory (Brualdi, Johnson), the Hadamard product
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(Horn) and nonnegative matrices (Mukherjea). There are many quite worthy
issues that are at least excruciatingly difficult to view in a basis-free way,
and freedom from the basis-iree view has opened many exciting avenues of
research. On the other hand, recognition of the “right” problem dependant
symmetries can provide vital insight (Diaconis). The synergy between matrix
theory and systems theory has had a tremendous impact on both, and on the
now highly mathematically driven field of electrical engineering (Gohberg).
The immense variety of tools and problems illustrates a reason for use of the
term “matrix theory” or “matrix analysis” in place of “linear algebra”. A large
portion of current work is neither primarily linear nor primarily algebraic in
nature. No point of view on what the subject is or where it is going could, or
should, be without substantial disagreement. This only reflects the remark-
able breadth of interest enjoyed by the subject. For an historical perspective
on the nature and role of the subject the reader might enjoy the prefaces to
each of the following: Recent Advances in Matrix Theory (Schneider 1964); 4
Survey of Matrix Theory and Mairix Inequalities (Marcus and Minc, 1964);
Linear Algebra and its Applications, volume 1 (Alan Hoffman, 1968); and
Matrix Analysis (Horn and Johnson, 1985). A glimpse of the contagious ap-
peal of the subject is communicated by Olga Taussky in her November 1988
Monthly article “How I Became a Torchbearer for Matrix Theory”.

As organizer, I would like to again thank each of the speakers for a con-
tribution that will advance both the subject and the general understanding of
it. The significant time necessary to prepare both a talk and then subsequent
paper is much appreciated. The community would also like to thank the
American Mathematical Society for recognizing, and providing a forum for,
the subject.

Charles R. Johnson
College of William and Mary
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THE MANY FACETS OF
COMBINATORIAL MATRIX THEORY

Richard A. Brualdi

ABSTRACT. Itake a very broad view of combinatorial matrix theory.
Combinatorial matrix theory is concerned with the use of matrix theory and
linear algebra in proving combinatorial theorems and in describing and
classifying combinatorial constructions, and it is also concerned with the use of
combinatorial ideas and reasoning in the finer analysis of matrices and with
intrinsic combinatorial properties of matrix arrays.

1. THE DETERMINANT. It should come as no surprise that combinatorial theory and matrix
theory could interact to form a subject called "combinatorial matrix theory". One of the first
matrix functions one studies is the determinant, and the determinant has a very combinatorial
definition: The determinant of an n by n matrix

(1.1 A= (aij :i=1,.,n;j=1,.,n)
is given by
n
(1.2) det A =) (sign ) a_ .
72[ ];I in(i)

where the summation is over all permutations © of (1,..,n}, and where signm is +1 or
—1 according as © is an even or odd permutation. We may impart even more combinatorial
spirit to the determinant through the use of directed graphs (or digraphs).

A digraph I' of order n has a set of n vertices, usually taken to be the set {1,...,n},
and a set A of arcs where each arc is an ordered pair (i,j) of not necessarily distinct vertices.

The arcs of I' can be regarded as a subset of the positions of the matrix (1.1). The entry aij

at the position (i,j) of A is the weight assigned by A to the arc (i,j) of T If aij =1 or

0 according as (i,j) isorisnotanarcof I' (ij = I,..,n), then A is the adjacency matrix of
. We may use these arc weights in order to assign weights to other objects associated

with I'. However this may be done, we define the weight of a set of objects to be the sum of
the weights of the objects in the set.

This paper was written during a period in which the author was partially
supported by National Science Foundation Grant No. DMS--8521521.

©1990 American Mathematical Society
0160-7634/90 $1.00 + $.25 per page



2 RICHARD A. BRUALDI

Let k be a positive integer. A cycle y of length k is a sequence
(1.3) (il"“'ik , il)

of vertices such that i,,....i, are distinct and (i},i,),....(i, 1. )(iyi;) are arcs of T
(referred to as the arcs of 7y). (If il""'ik are not assumed to be distinct, then (1.3) is called a

circuit.) We define the weight of a cycle (1.3) to be

(1.4) e ol 4 B o
s be) 1'% %1

the negative of the products of the weights of its arcs. When we refer to disjoint cycles, we

mean cycles with no vertex in common. The weight of a pairwise disjoint union of cycles is
the product of the weights of the individual cycles.

(1.5) Example: Let I" be the digraph of order 6 pictured below. Then

4 5 6
Z < 'Y .
N ~
7. N
~ rd
1 2 3
(1.6) {(1,5,2,1), (3,6,3), (4,4)}
is a pairwise disjoint union of three cycles of I' having weight
(- 5259871 )(A36863)(—44) = —8) 585 836844355863 - o
To a permutation ® of {1,..,n} we associate a permutation digraph I'(r) of order n

whose set of arcs is {(i,m(i)): i = 1,...,n}. There is a one—to—one correspondence between the
cycles of the permutation © and the cycles of the digraph I'(w). For example, let © be the

permutation of {1,...,6} defined by
n(l) =5, n(2) = 1, n(3) = 6, n(4) = 4, n(5) = 2, =(6) = 3.

Then I'(m) is pictured as
0 : 6

1 R 2 3

with the three cycles (1.6). Moreover
n=(152)4)36)
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is a representation of 7 as a product of pairwise disjoint permutation cycles of lengths 3,1,
and 2 rc'spectivcly.

’ Each permutation digraph I'(m) is the pairwise disjoint union of cycles encompassing
all vertices and its weight is

n

#TT
(1.7) (=1) E (i)

where #n is the number of cycles of n. Suppose the cycles of m have lengths ll""’[k ,

respectively, where k = #n. Then

=1+ -+(4—-1)
sign T = (—1) 1 k = (—l)n_k = (—l)n(—l)k .

Hence the weight (1.7) of I'(m) equals

n
(1.8) (sign ) ]—[ (_ain(i)) .
1=

Let P(n) denote the set of all permutation digraphs of order n. From the above discussion
we conclude that

(1.9) det(—A) = weight(P(n)) ,

a very combinatorial interpretation of the determinant.
Let In denote the identity matrix of order n. Then det(I n—A) is the sum of the

determinants of all principal submatrices of —A. It now follows that

(1.10) det(I_—A) = weight(?" (n))

where ’P*(n) denotes the set of all permutation digraphs whose vertices form a subset of
{1::1n).

While the above combinatorial interpretation of the determinant has been known for
some time, we have relied on the particular description in [Ze].

It was Jurkat and Ryser [JuRy1] who first showed that the determinant of an n by n
matrix can be represented as the product of n matrices. Since the determinant is a scalar, the
first matrix in the product must have one row and the last matrix must have one column. A
very short and very combinatorial derivation of this factorization was given in [BrSh] within
the general framework of a graded pose. We consider | re only the graded poset P of all
subsets of {1,...,n} partially ordered ty inclusion anc graded by cardinality.

Let Pi denote the collection of all i—element subsets of {1,...,n} (i=0,1,...,n), and
let agi), aéi), ....a(ri)) be a listing, say * = lexicographic order, of the sets in P’l The chains
i

of length n (the maximum possible length) in P are of the form

— o) W@ . .. cqm _
(1.11) ¢—ai0=1 cozil cai2 c cozin___1 ={1,..,n} .
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k)

Let j,_ be the unique element of agk not belonging to ai(:_:) (& = 1,...n). Then

(1.12) Jpdgr--ip

is a permutation of {1,...,n). Conversely, given a permutation (1.12) we obtain a chain (1.11)
by defining agg’ =¢ and agt) = (i) (€= L.

We use the n by n matrix (1.1) to assign weights to pairs consisting of an
(i—1)—element set al((l—l) in Pi—l and an i—element set ag) in Pi ¢
0, if al™qal)
(1.13) w) -
c. s .
Ty, if oDy () =af

and cj elements of al(‘i_l)

are greater than j.

The (")) by (}) marrix

WO e @D k=160 £= 1.8

is the weighted incidence matrix for Pi—l and Pi @i = 1,...,n). We observe that the entries of
wb depend only on the entries in row i of A.

(1.14) Example: Let n = 3. Then the partially ordered set P with weights assigned as
above is pictured below. The (formally) zero weights do not appear in this diagram which is
the usual Hasse diagram of P with labels (the weights) on its edges.

{1,2,3} P,

(1.2} {2,3}) P2
PP

(1} (3) P,

Py
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The chain ¢ c {3} c {1,3} c {1,2,3} corresponds to the permutation 3,1,2. o

We now define the weight of the chain (1.11) to be

1 @) (n)
(1.15) wioil wi1i2 ce win-lin .

if (1.11) corresponds to the permutation 7 in (1.12) then denoting the number of inversions of
n by inv(rm), we see that (1.15) equals
inv(m) . . 2
1) aljl a2j2 anjn = (sign m) E Bnd) -
Let C, denote the set of all chains in P having length n. It now follows that

(1.16) det A = weight(Cn) .

On tke other hand the matrix
w(l) w(2) w(n)

1sa 1 by 1 matrix whose unique entry equals

() @2 (n)
(1.17) wal wel e w
z 2 2 111 ijiy ln-ll

in—l i2 i 1

Since the product wg!) W(Z) cow® s zeroif 6= a(o),agl),....agn_l),a(n)
i i, il S i1

= (1,...,n} is not a chain, we conclude that

(1.18) weight(C) = Whw® ... w®

Combining (1.16) and (1.18) we obtain

(1.19) det A = wiw®@ ... w®@

a matrix factorization of the determinant.

(1.20) Example: Let n = 3. Then the factorization (1.19) is w(l)w(z)w(” where

) {1) {2} {3)
wi =6 a1y a3l

{1,2) {1,3) (2,3}
(1 ) a3 0

2 _
w (2} . —8y 0 253

3) 0 - -y —2
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{1,2,3})
(1,2) 233
w® - (13 a3, 8
{2,3) a3,

If we define the weights wl((iZ) by
0, if al((i_l) C aﬁ,i)

ap if oy (= o)

then we obtain as above matrices W(l),W(z) ,...,W(n) where now

W(I)W(z) cee W(n) =perA,

the permanent of the matrix A.

2. Matrix—theoretic Proofs of Combinatorial Theorems.

In this section we illustrate how matrix theory has been used to prove theorems in
combinatorics. These theorems have formulations which appear to be "purely combinatorial”,
but the proofs given show that the theorems have a hidden matrix—theoretic meaning, which is
provided by the incidence matrix.

Let X = {xl,...,xv] be a nonempty set of v elements, and let Xl,...,Xb be g not

necessarily distinct subsets of X. The incidence matrix of the subsets X1 ..... Xb of X isthe
b by v (0,1)—matrix
A=(aij: 1<€i<b; 1<j<v)

where aij =1 if x.i € Xi and aij =0 if X; £ X.. Row i of the incidence matrix displays

the elements of the set )(i while column j displays the sets containing the element X; . The
incidence matrix gives a complete description of the subsets Xl,...,)(b of the set X. The

importance of the incidence matrix in combinatorial theory rests with the observation that
combinatorial statements concerning the subsets Xl,...,Xb of X can often be formulated as

algebraic statements about the matrix A.

We now describe a class of configurations which are central in combinatorial theory.
Let k and t be nonnegative integers and let A be a positive integer. Then the subsets
Xl‘...,Xb of X= {xl....,xv} form a t—design provided:
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2.1) Each Xi contains k elements;
2.2) For each subset T of t elements of X, there are exactly A of the sets Xl....,Xb

which contain T.

A t—design is usually denoted as Sx(t,k,v), and the sets Xl....,Xv are called blocks. A

t—design with A =1 is called a Steiner system. A 2—design is commonly known as a

balanced incomplete block design (BIBD). Trivial examples of t—designs are obtained by
taking Xl,...,Xb to be the family of all the distinct k—element subsets of X (thus b = (K)

and A= (Z:)). The following are some basic facts about t—designs [Ha,Will,Wil2]

@3)  b=2aD.

(24) A t-design S(tkv) isalsoan i~design S, (k) where A, = A /(Th
1

17 M-

@i =0,1,...,t). In particular, the )‘i are integers.

According to (2.3) the integer b is determined by v,k,A, and t. A fundamental
problem in combinatorial theory is to determine if a t—design Sl(t,k,v) exists for given

vkA and t. A 1-design Sx(l,k,v) is a very general combinatorial configuration consisting
of b subset X],...,Xb of a v—element set X = {xl,...xv} where each Xi contains exactly
k elements and each xj is contained in =xactly A blocks. By (2.4) a t—design Sl(t,k,v)
with t22 is both a 1—design le‘1,k,v) and a 2—design 512(2,k,v). We now consider

2—designs 81(2,k,v) and denote the number ll of blocks containing a specified element by

r. By (2.3) and (24) bk =rv and r(k—1; = A(v—1).

Let A= ('a\i ; be the b by v incid.nce matrix of an SX(Z.k,v), and let AT denote

]
T
the transpose of A. The (i,j)—entry of A A is

b
2 auiauj ¢
u=]
which equals the number A of blocks containing x. and X; if i#j and equals the number

1

r of blocks containing X if i=j. Let Irn denote the m by m identity matrix, and let J o

denote the m by n matrix each of whose entries equals 1 (abbreviated to J b if m =n).

Then the properties (2.1) and (2.2) of a 2—design are entirely equivaleat to the matrix
equations
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(2.5) Al =iy, A ATA = a1+,

Since each element of X is in exactly r blocks, A also satisfies

(2.6) J,pA=1,.

We now assume that v >k, equivalently that r>A. The matrix (r—A)I + 7Uv has
cigenvalues r+(v-1)A and A-r (v—1 times), and it is easily checked that its inverse satisfies
2.7) @M, + )y = Loa - f% 1)

It follows from (2.5) that the v by v matrix ATA is nonsingular. Since A isa bbyv
matrix we obtain

(2.8) Fisher's inequality: Let v > k. Then the number b of blocks and the number v of
points in a- 2—design S;\(Z,k,v) satisfy b 2> v. o

We recall the following basic fact from linear algebra:

(2.9) Let C be an m by n matrix with rank equal to n. Then the orthogonal projection
from the m—dimensional real vector space m onto the column space W of C is given by
*he m by m matrix

(2.92) p=cclocT

The matrix P is symmetric and idempotent with eigenvalues 0 (m-—n times) and 1
:n umes). The orthogonal projection of R™ onto the orthogonal complement of W is given
by the m by m matrix Q=1 m—P. The matrix Q is symmetric and idempotent with

2igenvalues 0 (n times) and 1 (m-—n times). In particular, both P and Q are positive
semidefinite. 0

We apply (2.9) to the incidence matrix A of an Sz(l.k,v). The matrix ATA is

nonsingular, and using (2.5), (2.6), (2.7), and (2.9a) we calculate the orthogonal projections P

and Q:
-1,T

P=A(A A) A
= AT, + A1) 1AT
1 A T.
AT mx VA
hence

(2.10) P=ix(AA -1,

and
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1 T Ak
(2.11) Q=Ib_P=Ib_FX(M _'ij)'

Because Q is positive semidefinite each of its principal submatrices has a nonnegative
determinant. An m by m principal submatrix of Q is obtained as follows. Let xl.xm
‘be m of the blocks of a 2—design Sz(l,k,v). and let Xi' and Xj have “ij elements in -
common (ij = 1,..m). Let U= (u.ij: ij = 1,...,m). Then

1 Ak
U=~ = VU-F
is a principal submatrix of Q, and hence

(2.12) - detQ 2 0.

The 2b—l inequalities of the form (2.12) are Connor's inequalities [Co,Hal,Wil2]. The
diagonal entries of Qm are equal to (r—k)/r. For i#j the (ij)—entry of Qm equals
(Ak—ruij)/r(r—l). The case m =1 of (2.12) asserts that r 2 k; because bk =rv, thisis
equivalent to Fisher's inequality (2.8). The case m =2 of (2.12) is equivalent to the

statement that the number | of elements common to two different blocks satisfies

(2.13) —k)@—A) 2 |Ak—1p| . o

A symmetric 2—design is an Sz(l,k,v) with b=v (and hence r=k). For a symmetric

design (2.13) is equivalent to p = A. Thus in a symmetric design two distinct blocks have
exactly A elements in common. The incidence matrix A of a symmetric design thus =
satisfies the matrix equations

T

- = T_ - (ke
(2.14) JA=Al =K, AA =A A=(k-N +MN, .

The second set of equations in {2.14) implies that if there is a symmetric 2—design Sz(l,k.v),
then the matrices I, and (k—?t.)lv + M, are rationally congruent. This observation leads to

the following necessary conditions of Bruck, Ryser, and Chowla [Hal,Ry2] for the existence of
a symmetric Sz(l,k,v): ' #

(2.15) If v is odd, then the equation
v-1

x2 = (k=N)y2 + (<1) 2 Az2
has a solution in integers x,y, and z not all equal to 0. o
A pairwise balanced design is obtained by removing the condition (2.1) in the
definition of a 2—design. Thus subsets Xl,...,Xb of X =.{x],...,xv} form a pairwise
balanced design of index A 21 if and only if the incidence matrix A satisfies



