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Preface

This volume is a spin-off edition derived from Signal and Image Processing for Remote
Sensing. It presents more advanced topics of image processing in remote sensing than
similar books in the area. The topics of image modeling, statistical image classifiers,
change detection, independent component analysis, vertex component analysis, image
fusion for better classification or segmentation, 2-D time series modeling, neural network
classifications, etc. are examined in this volume. Some unique topics like accuracy assess-
ment and information-theoretic measure of multiband images are presented. An em-
phasis is placed on the issues with synthetic aperture radar (SAR) images in many
chapters. Continued development on imaging sensors always presents new opportunities
and challenges on image processing for remote sensing. The hyperspectral imaging
sensor is a good example here. We believe this volume not only presents the most up-
to-date developments of image processing for remote sensing but also suggests to readers
the many challenging problems ahead for further study.

Original Preface from Signal and Image Processing for Remote Sensing

Both signal processing and image processing have been playing increasingly important
roles in remote sensing. While most data from satellites are in image forms and thus
image processing has been used most often, signal processing can contribute significantly
in extracting information from the remotely sensed waveforms or time series data. In
contrast to other books in this field which deal almost exclusively with the image
processing for remote sensing, this book provides a good balance between the roles of
signal processing and image processing in remote sensing. The book covers mainly
methodologies of signal processing and image processing in remote sensing. Emphasis
is thus placed on the mathematical techniques which we believe will be less changed as
compared to sensor, software and hardware technologies. Furthermore, the term “remote
sensing” is not limited to the problems with data from satellite sensors. Other sensors
which acquire data remotely are also considered. Thus another unique feature of the book
is the coverage of a broader scope of the remote sensing information processing problems
than any other book in the area.

The book is divided into two parts [now published as separate volumes under the
following titles]. Part I, Signal Processing for Remote Sensing, has 12 chapters and Part II
[comprising the present volume], Image Processing for Remote Sensing, has 16 chapters. The
chapters are written by leaders in the field. We are very fortunate, for example, to have
Dr. Norden Huang, inventor of the Huang-Hilbert transform, along with Dr. Steven
Long, to write a chapter on the application of the transform to remote sensing problem,
and Dr. Enders A. Robinson, who has made many major contributions to geophysical
signal processing for over half a century, to write a chapter on the basic problem of
constructing seismic images by ray tracing.

In Part I, following Chapter 1 by Drs. Long and Huang, and my short Chapter 2 on the
roles of statistical pattern recognition and statistical signal processing in remote sensing,
we start from a very low end of the electromagnetic spectrum. Chapter 3 considers the
classification of infrasound at a frequency range of 0.001 Hz to 10 Hz by using a parallel
bank neural network classifier and a 11-step feature selection process. The >90% correct
classification rate is impressive for this kind of remote sensing data. Chapter 4 through



Chapter 6 deal with seismic signal processing. Chapter 4 provides excellent physical
insights on the steps for construction of digital seismic images. Even though the seismic
image is an image, this chapter is placed in Part I as seismic signals start as waveforms.
Chapter 5 considers the singular value decomposition of a matrix data set from scalar-
sensors arrays, which is followed by independent component analysis (ICA) step to relax
the unjustified orthogonality constraint for the propagation vectors by imposing a
stronger constraint of fourth-order independence of the estimated waves. With an initial
focus of the use of ICA in seismic data and inspired by Dr. Robinson’s lecture on seismic
deconvolution at the 4th International Symposium, 2002, on Computer Aided Seismic
Analysis and Discrimination, Mr. Zhenhai Wang has examined approaches beyond ICA
for improving seismic images. Chapter 6 is an effort to show that factor analysis, as an
alternative to stacking, can play a useful role in removing some unwanted components in
the data and thereby enhancing the subsurface structure as shown in the seismic images.
Chapter 7 on Kalman filtering for improving detection of landmines using electromag-
netic signals, which experience severe interference, is another remote sensing problem of
higher interest in recent years. Chapter 8 is a representative time series analysis problem
on using meteorological and remote sensing indices to monitor vegetation moisture
dynamics. Chapter 9 actually deals with the image data for digital elevation model but
is placed in Part I mainly because the prediction error (PE) filter is originated from the
geophysical signal processing. The PE filter allows us to interpolate the missing parts of
an image. The only chapter that deals with the sonar data is Chapter 10, which shows that
a simple blind source separation algorithm based on the second-order statistics can be
very effective to remove reverberations in active sonar data. Chapter 11 and Chapter 12
are excellent examples of using neural networks for retrieval of physical parameters from
the remote sensing data. Chapter 12 further provides a link between signal and image
processing as the principal component analysis and image sharpening tools employed are
exactly what are needed in Part II.

With a focus on image processing of remote sensing images, Part Il begins with Chapter
13 [Chapter 1 of the present volume] that is concerned with the physics and mathematical
algorithms for determining the ocean surface parameters from synthetic aperture radar
(SAR) images. Mathematically Markov random field (MRF) is one of the most useful
models for the rich contextual information in an image. Chapter 14 [now Chapter 2]
provides a comprehensive treatment of MRF-based remote sensing image classification.
Besides an overview of previous work, the chapter describes the methodological issues
involved and presents results of the application of the technique to the classification of
real (both single-date and multitemporal) remote sensing images. Although there are
many studies on using an ensemble of classifiers to improve the overall classification
performance, the random forest machine learning method for classification of hyperspec-
tral and multisource data as presented in Chapter 15 [now Chapter 3] is an excellent
example of using new statistical approaches for improved classification with the remote
sensing data. Chapter 16 [now Chapter 4] presents another machine learning method,
AdaBoost, to obtain robustness property in the classifier. The chapter further considers
the relations among the contextual classifier, MRF-based methods, and spatial boosting.
The following two chapters are concerned with different aspects of the change detection
problem. Change detection is a uniquely important problem in remote sensing as the
images acquired at different times over the same geographical area can be used in the
areas of environmental monitoring, damage management, and so on. After discussing
change detection methods for multitemporal SAR images, Chapter 17 [now Chapter 5]
examines an adaptive scale-driven technique for change detection in medium resolu-
tion SAR data. Chapter 18 [now Chapter 6] evaluates the Wiener filter-based method,



Mahalanobis distance, and subspace projection methods of change detection, with the
change detection performance illustrated by receiver operating characteristics (ROC)
curves. In recent years, ICA and related approaches have presented many new potentials
in remote sensing information processing. A challenging task underlying many hyper-
spectral imagery applications is decomposing a mixed pixel into a collection of reflec-
tance spectra, called endmember signatures, and the corresponding abundance fractions.
Chapter 19 [now Chapter 7] presents a new method for unsupervised endmember
extraction called vertex component analysis (VCA). The VCA algorithms presented
have better or comparable performance as compared to two other techniques but require
less computational complexity. Other useful ICA applications in remote sensing include
feature extraction, and speckle reduction of SAR images. Chapter 20 [now Chapter 8]
presents two different methods of SAR image speckle reduction using ICA, both making
use of the FastICA algorithm. In two-dimensional time series modeling, Chapter 21 [now
Chapter 9] makes use of a fractionally integrated autoregressive moving average
(FARIMA) analysis to model the mean radial power spectral density of the sea SAR
imagery. Long-range dependence models are used in addition to the fractional sea surface
models for the simulation of the sea SAR image spectra at different sea states, with and
without oil slicks at low computational cost.

Returning to the image classification problem, Chapter 22 [now Chapter 10] deals with
the topics of pixel classification using Bayes classifier, region segmentation guided by
morphology and split-and-merge algorithm, region feature extraction, and region classi-
fication.

Chapter 23 [now Chapter 11] provides a tutorial presentation of different issues of data
fusion for remote sensing applications. Data fusion can improve classification and for the
decision level fusion strategies, four multisensor classifiers are presented. Beyond the
currently popular transform techniques, Chapter 24 [now Chapter 12] demonstrates that
Hermite transform can be very useful for noise reduction and image fusion in remote
sensing. The Hermite transform is an image representation model that mimics some of the
important properties of human visual perception, namely local orientation analysis and
the Gaussian derivative model of early vision. Chapter 25 [now Chapter 13] is another
chapter that demonstrates the importance of image fusion to improving sea ice classifi-
cation performance, using backpropagation trained neural network and linear discrimin-
ation analysis and texture features. Chapter 26 [now Chapter 14] is on the issue of
accuracy assessment for which the Bradley-Terry model is adopted. Chapter 27 [now
Chapter 15] is on land map classification using support vector machine, which has been
increasingly popular as an effective classifier. The land map classification classifies the
surface of the Earth into categories such as water area, forests, factories or cities. Finally,
with lossless data compression in mind, Chapter 28 [now Chapter 16] focuses on infor-
mation-theoretic measure of the quality of multi-band remotely sensed digital images.
The procedure relies on the estimation of parameters of the noise model. Results on image
sequences acquired by AVIRIS and ASTER imaging sensors offer an estimation of the
information contents of each spectral band.

With rapid technological advances in both sensor and processing technologies, a book
of this nature can only capture certain amount of current progress and results. However,
if past experience offers any indication, the numerous mathematical techniques presented
will give this volume a long lasting value.

The sister volumes of this book are the other two books edited by myself. One is
Information Processing for Remote Sensing and the other is Frontiers of Remote Sensing
Information Processing, both published by World Scientific in 1999 and 2003, respectively.
I am grateful to all contributors of this volume for their important contribution and,



in particular, to Dr. J.S. Lee, S. Serpico, L. Bruzzone and S. Omatu for chapter contribu-
tions to all three volumes. Readers are advised to go over all three volumes for a more
complete information on signal and image processing for remote sensing.

C. H. Chen
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2 Image Processing for Remote Sensing

1.1 Introduction

Selected methods that use synthetic aperture radar (SAR) image data to remotely sense
ocean surfaces are described in this chapter. Fully polarimetric SAR radars provide much
more usable information than conventional single-polarization radars. Algorithms, pre-
sented here, to measure directional wave spectra, wave slopes, wave—current interactions,
and current-driven surface features use this additional information.

Polarimetric techniques that measure directional wave slopes and spectra with data
collected from a single aircraft, or satellite, collection pass are described here. Conven-
tional single-polarization backscatter cross-section measurements require two orthogonal
passes and a complex SAR modulation transfer function (MTF) to determine vector slopes
and directional wave spectra.

The algorithm to measure wave spectra is described in Section 1.2. In the azimuth
(flight) direction, wave-induced perturbations of the polarimetric orientation angle are
used to sense the azimuth component of the wave slopes. In the orthogonal range
direction, a technique involving an alpha parameter from the well-known Cloude-Pottier
entropy/anisotropy/averaged alpha (H/A/&) polarimetric decomposition theorem is
used to measure the range slope component. Both measurement types are highly sensitive
to ocean wave slopes and are directional. Together, they form a means of using polari-
metric SAR image data to make complete directional measurements of ocean wave slopes
and wave slope spectra.

NASA Jet Propulsion Laboratory airborne SAR (AIRSAR) P-, L-, and C-band data
obtained during flights over the coastal areas of California are used as wave-field
examples. Wave parameters measured using the polarimetric methods are compared with
those obtained using in situ NOAA National Data Buoy Center (NDBC) buoy products.

In a second topic (Section 1.3), polarization orientation angles are used to remotely
sense ocean wave slope distribution changes caused by ocean wave—current interactions.
The wave—current features studied include surface manifestations of ocean internal
waves and wave interactions with current fronts.

A model [1], developed at the Naval Research Laboratory (NRL), is used to determine
the parametric dependencies of the orientation angle on internal wave current, wind-
wave direction, and wind-wave speed. An empirical relation is cited to relate orientation
angle perturbations to the underlying parametric dependencies [1].

A third topic (Section 1.4) deals with the detection and classification of biogenic slick
fields. Various techniques, using the Cloude-Pottier decomposition and Wishart clas-
sifier, are used to classify the slicks. An application utilizing current-driven ocean
features, marked by slick patterns, is used to map spiral eddies. Finally, a related
technique, using the polarimetric orientation angle, is used to segment slick fields from
ocean wave slopes.

1.2 Measurement of Directional Slopes and Wave Spectra
1.2.1 Single Polarization versus Fully Polarimetric SAR Techniques

SAR systems conventionally use backscatter intensity-based algorithms [2] to measure
physical ocean wave parameters. SAR instruments, operating at a single-polarization,
measure wave-induced backscatter cross section, or sigma-0, modulations that can be
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developed into estimates of surface wave slopes or wave spectra. These measurements,
however, require a parametrically complex MTF to relate the SAR backscatter meas-
urements to the physical ocean wave properties [3].

Section 1.2.3 through Section 1.2.6 outline a means of using fully polarimetric SAR
(POLSAR) data with algorithms [4] to measure ocean wave slopes. In the Fourier-trans-
form domain, this orthogonal slope information is used to estimate a complete directional
ocean wave slope spectrum. A parametrically simple measurement of the slope is made
by using POLSAR-based algorithms.

Modulations of the polarization orientation angle, 6, are largely caused by waves
traveling in the azimuth direction. The modulations are, to a lesser extent, also affected
by range traveling waves. A method, originally used in topographic measurements [5],
has been applied to the ocean and used to measure wave slopes. The method measures
vector components of ocean wave slopes and wave spectra. Slopes smaller than 1° are
measurable for ocean surfaces using this method.

An eigenvector or eigenvalue decomposition average parameter &, described in Ref.
[6], is used to measure wave slopes in the orthogonal range direction. Waves in the
range direction cause modulation of the local incidence angle ¢, which, in turn, changes
the value of a. The alpha parameter is “‘roll-invariant.” This means that it is not affected
by slopes in the azimuth direction. Likewise, for ocean wave measurements, the orien-
tation angle § parameter is largely insensitive to slopes in the range direction. An
algorithm employing both (&, 6) is, therefore, capable of measuring slopes in any
direction. The ability to measure a physical parameter in two orthogonal directions
within an individual resolution cell is rare. Microwave instruments, generally, must
have a two-dimensional (2D) imaging or scanning capability to obtain information in
two orthogonal directions.

Motion-induced nonlinear ““velocity-bunching’ effects still present difficulties for wave
measurements in the azimuth direction using POLSAR data. These difficulties are dealt
with by using the same proven algorithms [3,7] that reduce nonlinearities for single-
polarization SAR measurements.

1.2.2  Single-Polarization SAR Measurements of Ocean Surface Properties

SAR systems have previously been used for imaging ocean features such as surface
waves, shallow-water bathymetry, internal waves, current boundaries, slicks, and ship
wakes [8]. In all of these applications, the modulation of the SAR image intensity by the
ocean feature makes the feature visible in the image [9]. When imaging ocean surface
waves, the main modulation mechanisms have been identified as tilt modulation, hydro-
dynamic modulation, and velocity bunching [2]. Tilt modulation is due to changes in the
local incidence angle caused by the surface wave slopes [10]. Tilt modulation is strongest
for waves traveling in the range direction. Hydrodynamic modulation is due to the
hydrodynamic interactions between the long-scale surface waves and the short-scale
surface (Bragg) waves that contribute most of the backscatter at moderate incidence
angles [11]. Velocity bunching is a modulation process that is unique to SAR imaging
systems [12]. It is a result of the azimuth shifting of scatterers in the image plane, owing
to the motion of the scattering surface. Velocity bunching is the highest for azimuth
traveling waves.

In the past, considerable effort had gone into retrieving quantitative surface wave
information from SAR images of ocean surface waves [13]. Data from satellite SAR
missions, such as ERS 1 and 2 and RADARSAT 1 and 2, had been used to estimate
surface wave spectra from SAR image information. Generally, wave height and wave
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slope spectra are used as quantitative overall descriptors of the ocean surface wave
properties [14]. Over the years, several different techniques have been developed for
retrieving wave spectra from SAR image spectra [7,15,16]. Linear techniques, such as
those having a linear MTF, are used to relate the wave spectrum to the image
spectrum. Individual MTFs are derived for the three primary modulation mechanisms.
A transformation based on the MTF is used to retrieve the wave spectrum from the
SAR image spectrum. Since the technique is linear, it does not account for any non-
linear processes in the modulation mechanisms. It has been shown that SAR image
modulation is nonlinear under certain ocean surface conditions. As the sea state
increases, the degree of nonlinear behavior generally increases. Under these conditions,
the linear methods do not provide accurate quantitative estimates of the wave spectra
[15]. Thus, the linear transfer function method has limited utility and can be used as a
qualitative indicator. More accurate estimates of wave spectra require the use of non-
linear inversion techniques [15].

Several nonlinear inversion techniques have been developed for retrieving wave
spectra from SAR image spectra. Most of these techniques are based on a technique
developed in Ref. [7]. The original method used an iterative technique to estimate the
wave spectrum from the image spectrum. Initial estimates are obtained using a linear
transfer function similar to the one used in Ref. [15]. These estimates are used as inputs
in the forward SAR imaging model, and the revised image spectrum is used to
iteratively correct the previous estimate of the wave spectra. The accuracy of this
technique is dependent on the specific SAR imaging model. Improvements to this
technique [17] have incorporated closed-form descriptions of the nonlinear transfer
function, which relates the wave spectrum to the SAR image spectrum. However,
this transfer function also has to be evaluated iteratively. Further improvements to
this method have been suggested in Refs. [3,18]. In this method, a cross-spectrum is
generated between different looks of the same ocean wave scene. The primary advan-
tage of this method is that it resolves the 180° ambiguity [3,18] of the wave direction.
This method also reduces the effects of speckle in the SAR spectrum. Methods that
incorporate additional a posteriori information about the wave field, which improves
the accuracy of these nonlinear methods, have also been developed in recent years [19].

In all of the slope-retrieval methods, the one nonlinear mechanism that may completely
destroy wave structure is velocity bunching [3,7]. Velocity bunching is a result of moving
scatterers on the ocean surface either bunching or dilating in the SAR image domain. The
shifting of the scatterers in the azimuth direction may, in extreme conditions, result in the
destruction of the wave structure in the SAR image.

SAR imaging simulations were performed at different range-to-velocity (R/V) ratios to
study the effect of velocity bunching on the slope-retrieval algorithms. When the (R/V)
ratio is artificially increased to large values, the effects of velocity bunching are expected
to destroy the wave structure in the slope estimates. Simulations of the imaging process
for a wide range of radar-viewing conditions indicate that the slope structure is preserved
in the presence of moderate velocity-bunching modulation. It can be argued that for
velocity bunching to affect the slope estimates, the (R/V) ratio has to be significantly
larger than 100s. The two data sets discussed here are designated ““Gualala River”” and
““San Francisco.” The Gualala river data set has the longest waves and it also produces the
best results. The R/V ratio for the AIRSAR missions was 59s (Gualala) and 55s (San
Francisco). These values suggest that the effects of velocity bunching are present, but are
not sufficiently strong to significantly affect the slope-retrieval process. However, for
spaceborne SAR imaging applications, where the (R/V) ratio may be greater than 100s,
the effects of velocity bunching may limit the utility of all methods, especially in high
sea states.



