DISK |

INCLUDES MEMORY AND DISK Included

EXPLORATION UTILITIES

GEOLE CHAFPEL L

DOS Internals

Geoff Chappell

A
vy

Addison-Wesley Publishing Company
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademark. Where those designations appear in this book and Addison-
Wesley was aware of the trademark claim, the designations have been printed in initial
capital letters.

The author and publishers have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data
Chappell, Geofft.
DOS internals / by Geoff Chappell.
~ p. cm.
Includes index.
ISBN 0-201-60835-9
1. MS-DOS (Computer file) 2. PC-DOS (Computer file) I. Title,
QA76.76063C452 1994
005.4'469--dc20 93-46019
CIP

Copyright © 1994 by Geoff Chappell

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in Canada.

Managing Editor: Amorette Pedersen
Set in 10.5-point Galliard by Benchmark Productions, Inc.

123456789-MA-9897969594
First printing, January 1994

Addison-Wesley books are available for bulk purchases by corporations, institutions, and
other organizations. For more information please contact the Corporate, Government,
and Special Sales Department at (617) 944-3700 x2915.

To A.,
You can never be alone
while you can laugh at Busiuel

Preface

Scope

It should be understood from the outset that this book is an analysis primarily of DOS 5
and 6. Constraints on time (and, let it be said, interest) have not always permitted special
cases arising from earlier DOS versions to be taken up for discussion.

There are programming examples in this book which insist on having DOS 5 or
higher. The most notable case is a library (developed in Chapter 7) which binds device
driver initialization to the C run-time library. The code avails itself of the safety feature
new to DOS 5 by which device drivers are supplied with an upper bound on the memory
they may use during initialization. No doubt some vaguely satisfactory workaround could
be contrived to support earlier DOS versions, but the attempt is not made. The decision
in this particular case is borderline but my attitude is to not support DOS versions
before 5 if the effort would be out of proportion to (and therefore distract from) the
didactic point being made at the time.

Going Back

That said, you will find that analysis usually extends backwards to versions 4.01 and 3.30,
both of which I have studied in comparable detail. Here again, there are decision
boundaries about how much effort to spend over, say, the description of an interface that
has changed since one of these versions. An example (from Chapter 16) is the
undocumented int 2Fh function 08h through which 10.SYS supports the definition by
DRIVER.SYS of extra units for the default block device driver. The structure in which
10.SYS maintains all its knowledge of block device units changed markedly for DOS 4
and, as far as this book is concerned, it must suffice just to note that the structure given in
the text applies only from DOS 4 onward. I hope that all differences of any significance
have at least been noted in this fashion.

Earlier versions than 3.30 were alrcady uncommon by the time I wrote my first DOS
program in 1989. Viewed through my eyes, all versions before 3.30 belong to some dim
pre-history on which weak light is thrown occasionally by inspection of software that
supports a range of DOS versions. A particularly well-informed source of information
about earlier versions (and which has sufficient importance to justify close inspection) is
Microsoft Windows, which supports DOS versions from 3.10 onwards.

As far as this book is concerned, DOS 3.10 is an event horizon. Put another way, to
anyone concerned with programming DOS at system-level, DOS versions 1.xx, 2.xx, and
3.00 may as well lie in a black hole.

XV

XVl DOS INTERNALS

It is as well to offer system-level programmers some guidance over DOS versions
while the boundaries and prejudices are being explained. DOS 1.xx appears to have been
regarded generally as off-limits for many years: it is well-known that this version has no
notion of directories or file handles, let alone support for memory management and
program execution. These few words in this paragraph are all that will be said about
DOS 1.xx in this book. No account is even allowed for DOS 1.xx in the programming
examples, all of which assume that the case will be handled by the C run-time. I cannot
resist the facetious remark however, that DOS programmers who cut their work off from
the possibility of running under DOS 1.xx are doing themselves out of some small slice of
the market: I know at least one person who continues to use (for normal secretarial work,
no less) a genuine IBM PC running DOS 1.10 from 320K floppy disks.

For the most part, DOS 2.xx offers all the facilities that will usually be required by
programs which work at the level of files and above, i.e., by ordinary, well-behaved
applications. There are, however, good grounds for even applications programmers to
insist on some form of DOS 3, at least. It may seem a bit excessive to discount a whole
major DOS version for the following little reason, but this is what T recommend: In
DOS 2.xx, there is apparently no way to fail an int 24h exception. True, it is possible to
fiddle with registers on the stack and return to the application rather than to the DOS
kernel, but Chapter 5 shows that this technique is suspect even under later DOS versions,
primarily because of the difficulty of determining which DOS function has encountered
the error, and thence what error indication (if any) should be prepared for the AX and
flags registers, This lack of a Fail option complicates critical error handling unreasonably.
Supporting DOS 2.xx will often involve implementing a full int 24h handler to be sure
that if the user wants to terminate the program, then at least the cleaning up will remain
within the program’s control. Even with this extra work, however, the quality of error
recovery cannot hope to be as good as can be achieved in later versions by the simple
expedient of just failing DOS functions that encounter critical errors.

When it comes to systems-level work, you don’t have to be at all adventurous to run
into a plethora of old wives’ tales. It is unimaginable that anyone competent will ever track
down all OEM variants of DOS 2 and analyze them to settle some of these hoary old
stories. No doubt the cases which were found important for TSR programming at the
time are well established, but they are unlikely to have been covered exhaustively. This is
why I describe them as old wives’ tales: They will be rough and ready formulations that
seemed to get the job done. Handwaving and folklore have no place in this book; at least,
that’s the intention. The spirit of this book is that programs should be safe and that
programming should be sure. Knowledge brings confidence that ambitious projects can
be made to work reliably, preferably first time.

To some extent, the question whether to support DOS 2.xx is academic, since I
contend that even DOS 3.00 is not a sufficiently reliable platform for adventurous DOS
programs. The most glaring difficulty for TSR programming is that there is no means to
restore extended error information. It looks as if DOS 3.00 was a trial run preceding

PREFACE XVH

proper support for networking. Internal structures and functionality seem not to have
been finalized and, perhaps inevitably, there are omissions.

In Microsoft’s scheme of networking, a remote machine’s request for file I/O is
treated very much like the same request from a pop-up TSR. The desire to support
networking appears to have concentrated the mind wonderfully on questions of re-entrancy
and the nature of certain system resources. A consequence of good planning for network
support is that the DOS kernel has enjoyed remarkable stability from DOS 3.10 onward.

Windows requires DOS 3.10 or higher. This is surely no coincidence. The questions
noted above are also the ones of main interest when programming TSRs or more
generally any sort of task-switcher. For a large class of programming exercises that lie
beyond ordinary well-behaved access at file level, the general self-consistency and
uniformity of the DOS programming model in versions 3.10 and higher, coupled with
the justification that this version is required by the ubiquitous Windows, suggests that is
wholly reasonable for systems-level programmers to insist on having at least DOS 3.10
present when their programs run.

It happens that concerns related to task-switching are not the whole story and that
DOS 3.10 might not suffice for some applications. Although the interesting questions of
process and resource management seem to have been thought out respectably well
for 3.10, it was not until DOS 3.20 that attention was directed to giving DOS
applications the means to exercise fine control over disk structure, that is, to call through
to device drivers for specialized services like disk formatting. Generic IOCTL (used for the
disk duplicating program presented in Chapter 18) is available only from DOS 3.20
onward.

Well, all new DOS versions bring new functionality that applications may use in their
dealings with the system (or so one might have supposed until recently) and there will
always be reasons to restrict some program’s operational domain to some narrow range of
probably recent DOS versions. These notes are an attempt to explain my particular
feelings on the matter. In fact, close inspection of the programming examples
accompanying this book will show that checking the DOS version is the least priority.

Looking Ahead

Some readers will wonder about DOS 6. This is unfortunate, for I think it shows that
even those sections of the trade press which concern themselves with technical aspects of
DOS programming have given DOS 6 rather more attention than it deserves.

Let there be no mistake: The programming model offered by DOS 6 differs hardly at
all from the one provided by DOS 5. The resident portion of IO.SYS and the whole DOS
kernel (MSDOS.SYS) are barely changed. As some measure of this, the most significant
point I can see to make about the DOS 6 kernel is that it fixes a bug by which the DOS 5
kernel, when configured for dos=high with BUFFERS in the HMA, would lose track of
error conditions when reading sectors into the BUFFERS system. The possibility has not

XVIIl DOS INTERNALS

yet been discounted that the simple oversight responsible for this had already been
corrected in later releases of DOS 5.

A graphic illustration of the similarity between DOS 5 and DOS 6 at system level is
that a DOS 5 machine may be booted in perfect safety, gaining the facility for multiple
configurations, if the DOS 5 T0.SYS is updated to the DOS 6 version with everything else
being left intact, Not even for DOS versions 3.20 and 3.30 is it possible to boot with
10.SYS from one version and MSDOS.SYS from the other.

Fortunately, there is more to DOS 6 than the system files. Quite a number of
substantial applications have been bundled with DOS 6 and these presumably justify
incrementing the major version number.

It is the book’s overall policy to deal only with DOS features that are somehow
intrinsic to the DOS programming model and that will be encountered by ambitious
DOS programmers. This serves to excuse no end of analysis of Windows, sometimes
reaching far beyond what some may think appropriate in a book on DOS. If the presence
of some picce of software may cause the DOS programmer some difficuity and is a matter
of sufficient interest to have held my attention for long enough to write about it, then it
may very likely appear in the book.

Thus, it is one thing to examine HIMEM.SYS as the standard XMS server and to
consider how its behavior is driven by the installation of other software such as the task-
switchers for the MS-DOS Shell and Windows 3.1 standard mode. Throughout DOS’s
twilight years (and it could be a surprisingly long twilight), the XMS seems likely to be an
important feature of DOS programming. It would be quite another thing however, were
this book to study RAMDRIVE.SYS just because it happens to be an XMS client.

Similar arguments apply to DoubleSpace. T am aware that this disk compression
software bundled with DOS 6 has generated enormous interest and that there is sore need
for sober analysis. While Chapter 3 describes the interface between 10.SYS and
DBLSPACE.BIN is some detail, this book is not the place for a discussion of
DoubleSpace itself. Though DBLSPACE.BIN is billed as a new system file, this role arises
only as the means to secure its presence on bootable floppy disks, and that 10.SYS should
know about the file in order to enable compressed drives as carly as possible. In
programming terms however, DBLSPACE.BIN is far from fundamental: By hooking into
DOS’s device driver communications, it presents the contents of a file (the DoubleSpace
Compressed Volume File, or CVF) as a DOS drive. Thus, DBLSPACE uses the strucrures
and interfaces DOS already supports for drive management. These you will find discussed
in Chapter 16, since they need to be understood by any DOS programmer intending to
work close-in with standard disk drive storage on PCs. As far as this is concerned, the only
special consequence of DoubleSpace’s distribution as a component of the standard DOS
package is that users might reasonably have expected rather more in the way of safety and
compatibility. That Microsoft can have fallen short in these factors when releasing the
version supplied with the DOS 6.20 upgrade must count to the industry’s undying
shame.

PREFACE XIX

Notations and Conventions

Inevitably, in a book whose programs are mostly written in C but whose author is
arguably not a C programmer, a few things should be explained from the outset.

All C source for this book is intended for compilation under Microsoft C 6.0. Perhaps
it need not be mentioned here (since the realization will follow trom just a cursory glance
at the source code), but the compiler is used very much as a tool for high-level assembly
language. For the few modules written in assembly language, the expected assembler is
MASM 6.0.

There will undoubtedly be some notational changes required for porting the C source
code to one of the competing C compilers for DOS, but I expect this process to be fairly
mechanical. Some important cases exist, however, where the code depends strongly on
labels that are probably peculiar to the Microsoft C run-time library. This applies to the
two programs presented in Chapter 5, for reasons that are completely unrelated. In one, it
is a simply irresistable convenience to reach deep within Microsoft’s implementation of the
spawn family of functions in order to replace their common core but to keep their ability
to do such things as to follow the PATH environment variable when searching for a
program. This gives the book’s programming example the power of a real program rather
than an instructive gadget. Nonetheless, it is the instruction which is the program’s claim
to existence and readers should be prepared to do their own possibly heavy adaptation if
they want to port the program to another compiler. It is hoped thar the dependencies will
be flagged well enough that the task should not be odious.

This point is strongest in Chapter 6, which develops a scheme for resident
programming in C. The object is not to develop a universal scheme but to sce how
problems posed by the compiler at hand may be resolved through combining an
understanding of DOS’s behavior with the will to overcome difficulties. For a different
compiler, there may be different problems, but again, all I can hope is to have marked out
the course sufficiently clearly.

Standard Macros and Symbols

Among this book’s header files is one which contains symbols and so forth, that the
author prefers to have handy when programming in C:

/* standard.h */

#ifndef __STANDARD INC
#define __STANDARD_INC

/* Logical operators and values */

#define AND &&
#define NOT !

XX DOS INTERNALS

#define OR ||

#define FALSE O

#define TRUE 1 // for consistency with TRUE = NOT FALSE
#define OFF

#define ON

#define CLEAR O

#define SET 1

/* Convenient data types */

typedef unsigned char BYTE;
typedef unsigned int WORD;
typedef unsigned long DWORD;
typedef signed char SBYTE;
typedef signed int SWORD;

typedef signed long SDWORD;
typedef unsigned char CHAR;
typedef int BOOL;

/* Macro for generating a far pointer from segment and offset */

#define MK FP(seg,off) (((_segment) (seg)) :> ((void _based (void) *) (off)))

/* Macros to decompose l6-bit and 32-bit objects into high and low
compeonents and to reconstitute them */

#define HIGH(x) ((BYTE) ((x) >> 8))

#define LOW(X) ((BYTE) (x))

#define MK WORD(high,low) (((WORD) (high) << 8) | (low))
#define HIGHWORD(x) ((WORD) ((x) >> 16))

#define LOWWORD(x) ((WORD) (x))

#define MK DWORD(high,low) (((DWORD) (high) << 16) | (low))

/* Macros for directing the compiler to use current segment register
values rather than generate relocatable references */

PREFACE XXl

#define CODESEG _based (_segname ("_CODE"))
#define CONSTSEG _based (_segname ("_CONST"))
#define DATASEG _based (_segname ("_DATA"))
#define STACKSEG _based (_segname ("_STACK"))

/* Macro for NULL in case using STDLIB.H would be inappropriate */

#ifndef NULL
#define NULL ((void *) 0)
#endif

#endif

Standard Makefile Inclusions

Likewise, all the book’s makefiles include the following standard provisions, if only to hide
awkward things like ensuring that compiler options don’t sneak in from environment
variables.

H

standard.mak
This is an NMAKE include file for projects containing assembler and C.

Pre-defined inference rules present some problem when compiling C source
files with the /Fa option to generate assembly listings. Once the .ASM

#

#

file exists, NMAKE assembles the old listing rather than compile the new
C source even if the inference rule contains an explicit .C dependence.
#

Fix this by reversing the order of .ASM and .C in a new .SUFFIXES list.

.SUFFIXES :
.SUFFIXES : .c .asm

Utilities not known to NMAKE by default:
LIBRARIAN = lib
LINKER = link

MAPSYM = mapsym

Favored switches for the assembler, compiler and linker:

ASWITCHES = /Cp
CSWITCHES = /Gs /Oas /W3 /Zpl
LSWITCHES = /noi

Generate listings unless "LISTING=OFF" is given on the NMAKE command

XXIl DOS INTERNALS

line or precedes the inclusion of this file.

| TFNDEF LISTING
LISTING = ON

IENDIF

'IF "$(LISTING)" == "ON"
ALIST = /Fl /Sg

CLIST = /Fa

LLIST = /m

{ENDIF

AFLAGS = $(ASWITCHES) $(ALIST)
CFLAGS = $(CSWITCHES) $(CLIST)
LFLAGS = ${(LSWITCHES) $(LLIST)

ASSEMBLE = $(AS) /c §$(AFLAGS)
COMPILE = $(CC) /c $(CFLAGS)
LINK = ${LINKER) $(LFLAGS)

Pseudo-targets:
ALL : CLEAR TARGETS

The first pseudo-target is a possibly over-cautious insistence on
clearing flags passed to the assembler, compiler or linker through

environment variables.

CLEAR :
set $(AS)=
set $(CC)=
set $(LINKER)=

Header Files

Heavy use is made of a collection of header files defining structures, etc., for key elements
of DOS programming. It is hoped that the use of long identifiers makes it easy enough to
follow source without having to reprint these many header files in the text of the book or
even as an appendix, especially when many of the structures concerned are presented in
tabular form anyway. All include files appear on the accompanying disk.

In the inclusions at the top of each C module, it is assumed that header files from this
collection are available on a path defined in the INCLUDE environment variable. The
filenames are therefore enclosed in angle-brackets. For clarity, standard header files and
those specific to this book are presented in two separate blocks of inclusions.

PREFACE XXII

Nomenclature

In general, structure elements and public data are named with a prefix to describe the data
type, following the so-called “Hungarian” scheme presented in the Windows SDK. Given
the author’s clear preference for unsigned quantities, only some of the prefixes given in
the Windows SDK are used here:

*+ b int (two bytes) taking Boolean values

* < char (single byte)

e dw dword (four bytes)

e Ip far pointer

* p pointer (typically a 16-bit offset, given the predominance of small memory
model)

LAY word (two bytes)

All the book’s source code, whether for C or assembly language, is case-dependent. If
a structure clement, function or public label has a compound name, then cach element
begins with an upper case letter for readability, as in SomeFunctionName or
dwLongStructureElement. Macros and other equates are usually given in capitals only,
using underscores if they seem required for readability, as in SOME_MACRO. Names tor
automatic data and many static variables often consist of lower case letters only: since their
scope is severely restricted, their readability (if not also the name itself) is perhaps not so
important.

Typeface Conventions

Some attempt is made at using different typefaces to emphasise the technical role of a
word or phrase in the book’s main text.

When DOS commands such as fdisk /status are used mid-sentence, they appear in
bold. The same applies to configuration statements like multitrack=off or RemMediaCD
ChngTrack=on (which are permissable in CONFIG.SYS and SYSTEM.INI respectively)
and, less commonly, to keywords from programming languages.

Filenames and program names are given in upper case when they are not in the
context of a command. Thus, text might speak of the WIN.COM program that starts
Windows but of running the command win :: to see Windows crash.

Function names that might ordinarily appear in programming code retain the use of a
fixed pitch typeface when extracted into the main text, as happens for instance when a
point is made about the _chain_intr function in the Microsoft C library. Fixed pitch is
also used when taking several lines to show the contents of a text file or to present the
results of running a program.

Acknowledgments

It seems customary in books that delve into DOS or Windows programming to thank a
list of software developers who have helped with information, including some who must
remain nameless. This is not the case here, but since this is my first book, please bear with
me while I thank those who have played key parts in bringing me to a study of DOS
programming, in addition to thanking those with a closer connection to the book itself.

Although he may not remember it, Professor Jonathan Kaye of the Department of
Linguistics at the School of Oriental and African Studies (SOAS) played an instrumental
role in seeding my over-indulgent interest in programming way back in 1989.

Without the students living at the International Hall of Residence at the University of
London, some of whom used to insist on misbehaving with a few communal PCs (and
now just have a canny knack of doing strange things with their own PCs), I might never
have found the motivation to uncover the truth behind DOS’s inner workings, or at least
to put my findings into practice. While this book was being written, many of the Hall’s
students and staft (especially its Warden, Donald Mann) found time for words of
encouragement. They probably think their efforts were not even noticed, so gloomy was
my outlook at some points in this book’s history.

Major Reg Cross and his wife Mary Cross have been consistently concerned for my
well-being. Reg suggested many years ago that I had the right sort of mind for
computing. I’'m not sure I yet agree with him or that I’ve taken up the subject in quite
the way he had in mind, but I know he’ll take it in his usual good humor if I name him as
the one to blame for all this.

Neither Miles Dennis nor Martyn Lovell is primarily a PC programmer, but it was
invaluable having them at hand in the first few months to read over rough work for the
book and to assure me that my mental flotsam was surviving its translation process. My
respect for their technical abilities is no faint praise, as readers of this book will quickly
appreciate. Miles also has been a consistently concerned and supportive friend. And I’'m
not saying that just because I’ve had near to permanent loan of his nice fast modem.

Had Miles and Martyn not insisted, I might never have joined CIX, a system for
conferencing and email which first put me in touch with professionals who were interested
in technical aspects of DOS programming. Immediately, 1 was encouraged to make
something of my DOS study, which just a little earlier I had thought to abandon. I should
like to single out David Jewell, author of the forthcoming book Polishing Windows, who
has been particularly helpful by way of encouragement and always ready to act as a
common-sense sounding board (until he too succumbed to this degenerative condition
called book-writing).

XXV

XXVI DOS INTERNALS

Dan O’Brien, also met through CIX, may not have known what he was starting when
he gave me the opportunity to review the book Undecumented DOS for .EXE magazine in
April, 1991. On the other hand, he may have had a pretty good inkling that the review
would be critical. This book is very much Andrew Schulman’s Revenge. It is a double-
edged blade however; Andrew has surely had many “heart attacks” while wondering how
to cope with his author’s curious approach to writing a book. He has taken a lot of
trouble to sce that the results actually appear in print, going so far as to write the
introductions and links that I simply didn’t do.

Ralf Brown was kind enough to read my scrappy manuscript and make sense of it.
This can’t have been easy, as you the reader are about to discover, in spite of the changes
and second-thoughts prompted by Ralf’s analysis.

At Benchmark Productions and Addison-Wesley, there are a host of people 1 have
never seen but whose work is responsible for transforming my manuscript into the book
you have before you. Those I know about are Abby Cooper, Ann Lane, Amy Pedersen,
Chris Platt, and Andrew Williams. I have at least talked to Chris Williams and Phil
Sutherland. If you like this book, please write to Phil at Addison-Wesley: in doing this,
you may help restore them from the depths of despair to which I've no doubt reduced
them.

Professor John Taylor, Director of the Centre for Neural Networks at King’s College,
London has been very kind to keep in touch and keep me in mind despite the ever-
lengthening time that this book has prevented me from engaging in useful research (not
to mention writing up results).

Special personal thanks must be extended to long-standing friends Brad McCusker,
Anne Tully, and Lorna Gibb, not for any particular connection with the book, but for
consistently showing far more faith in me than can be reasonably justified and for just
about managing to counter-balance my persistent sense of abject failure. My parents,
Myles and Angela Chappell, in Bundaberg, Australia, have been truly supportive despite
my great distance from home. Without their assistance at vital moments, this book would
certainly have been aborted. Please recommend this book heartily to all and sundry so that
I can visit my parents and take my friends out to dinner.

When 1 was just a teenager, a kind, gracious gentleman by the name of Fred
Hendricksen took a large sum of money from his own pocket for me to buy books. Now
I’ve written one, Uncle Fred.

Geoff Chappell
(geoffe@cix.compulink.co.uk)
London

Contents

Part I—Memory Management 1
Memory Problems 1
DOS 5 Solutions 3

Chapter 1—System Configuration 7
Automatic Configuration 7
User-level Configuration 8

Configuring 10.5YS 8
Overriding the BIOS 8
Reverting to Old Behavior 9
Configurable System Support 11
Configuring the Kernel 12
Installable Device Drivers 16
Running Programs 21
Four DOS Regimes 22

Chapter 2—The System Footprint 27

10.SYS 27
The 10.8YS Loader 29
Low and High Segments 31
Int 19h—Preparing for a Warm Boot 33
Int 15h—DPreparing for Ctrl-Alt-Del 48
Int 13h—Disk Support 54
Int 2Fh—Multiplex Interfaces to 10.SYS 57

Applications for Int 2Fh Function 13h 59

VI DOS INTERNALS

Windows Support 96
Error Conditions in Critical Sections 96
Instance Data 97
Measuring DOS’s HMA Usage 102

MSDQOS.SYS—The DOS Kernel 104
Low and High Segments Revisited 105
ROM-Executable DOS 106
Kernel Variations 110
The True DOS Version 112
Kernel Varjables 113
Windows Support 115
Windows 3.0 Real Mode 122
Windows /386 123
Driving Windows from DOS 124

The Command Processor 127

Chapter 3—The Startup Sequence 131

Juggling the System 131
Before DOS 5 131
DOS 5 132

Activating the DOS Kernel 135
Moving Kernel Data to Low Memory 136
Planning Ahead for Moving Kernel Code 136
Marking Progress 137
Calling the Kernel 137
Initializing the Default Device Drivers 138
Interrupt Vectors for DOS Services 139
First Steps to Memory and Process Management 140

Booting DOS Externally 140

