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PREFACE

The aim of this volume is to offer a set of highly qualified contributions on
recent advances in Differential Geometry and Topology, with some emphasis
on their application in Physics.

A broad range of themes is covered in the book, including convex
sets, Kaehler manifolds and moment map, combinatorial Morse theory and
3-manifolds, knot theory and statistical mechanics.

The motivation for publishing the book, thus giving the reader an oppor-
tunity to be introduced in attractive areas of current research, was originated
by the success of a workshop held in Torino in June 1987 at Villa Gualino.

This meeting has been possible by the financial aid of the Italian Minister
of Public Instruction, under the project “Geometry of Manifolds”.

Its success was undoubtedly due both to the contributions of the distin-
guished Mathematicians who accepted our invitation and to the incomparable
support offered by the Institute of Scientific Interchange of Torino.
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CONVEX SETS AND KAHLER MANIFOLDS
M. GROMOY

Institut des Hautes, E'tudes Scientifiques Bures-sur-Yvette, France

0.1. Brunn-Minkowski inequality. Recall that the Minkowski sum X+Y of subsets X
and Y in the Euclidean space IR™ is the set of the sums x+y € R0 forallx e Xandy € Y.

An equivalent definition is

X+Y =U X+y
yeY

where X+y denotes the y-translate of X which is the same thing as the sum of X with the
one-point set {y}. Note that
X+Y=Y+X as x+y=y+x in RD,

0.1 A. Example. Let Xg be the €-ball in IRD around the origin. Then, by the second
definition, Xg+y equals the union of the €-balls in R? with centers in Y which is
customary called the €-neighborhood of Y.

0.1.B. Brunn-Minkowski theorem. The n-dimensional volume (i.e. Lebegue's
measure) of X+Y is bounded from below by

[Vol (X+Y)]¥/n > (Vol X)1/n + (Vol Y)1/n . *)
Remarks and corollaries.0.1 By. We are most interested here in the classical case of (*)
where X and Y are bounded convex subsets in R, Yet, (*) remains valid for arbitrary

(measurable) subsets X and Y in IR (see 3.1.).

0.1.B2. Let X and Y be rectangular solids with mutually parallel edges of lengths ajy,...,
ap and by,..., by. Say,



X =[o,a1] x...x [0,an],
Y = [o,b1] x...x [0,bn].

X+Y = [0,a1+b1] X...x [0,ap+bp]

and (*) reduces to the following well-known algebraic inequality,
n Jd/n n 1/n n 1/n
( n  (aj+bj) 2 ( T ai> + ( T bi) ™
i = 1 l =1 l = 1 .

0. 1 B3. Let Y have smooth boundary dY and take the €-ball Bg in r!? for X. Then, one

easily sees (compare 0.1.A) that the (n-1)-dimensional volume of JY satisfies

Vol 9Y = lim £-1) (Vol (Y+Bg) - Vol Y) _
€0

Thus, (*) yields the Euclidean isoperimetric inequality,

n
VoldY 2 Cp(VolY) n-1

where Cp, denotes the (n-1)-dimensional volume of the boundary sphere of the ball B
RN normalized by the condition Vol B = 1.

0.2. Hodge-Teissier-Hovanski inequality. Consider the Cartesian product of two complex
projective spaces Pj x P2 with the standard metric and let V be a complex algebraic
subvariety in P; x P2 of complex dimension n. (The reader unfamiliar with this
terminology is addressed to section 3.3.). Denote by V] cP; and V; c P2 the
projections of V to P; and to P».

0.2.A. Algebraic Brunn-Minkowski. If V is irreducible (see 3.3.), then the 2n-
dimensional volumes of V, V1 and V3 satisfy

(Vol V)I/n > (Vol V)I/n + (Vol Vp)lin *)



Remark and Corollaries. 0.2.A1. If n=1, then (+) is trivial. In fact one has equality in this
case.

0.2.A3. If n=2 then (+) is equivalent to the Hodge index theorem (see 3.3.). Note that (+)
may easily fail if V is reducible. For example, take

V =(Vixvy) U (va2x V3)
for Vi c P and V; cP; fori= 1,2. Then

(Vol V)V = (Vol V1+Vol V2)I/h < (Vol V)I/n + (Vol Vp)l/n,

0.2.A3. The inequality (+) for n 2 3 was discovered by Hovanski and Teissier. Their
proof (see 3.3.) goes by induction on n = dim V which starts with n = 2, where the
inductive step for n 2 3 is realized by intersecting V with an appropriate hypersurface H in
P; x P2, and where the irreducibility of the intersection V N H (having the dimension by
one less than V) is achieved with the Bertini theorem (see 3.3.). In fact, Teissier and
Hovanski proved a refinement of (+) which is parallel to the Alexandrov-Fenchel
inequality for convex sets (see 1 .6.). Alexandrov gave two proofs of his inequality. The
first proof (see [Al]}) is combinatorial and resembles the algebra-geometric argument by
Hovanski and Teissier (instead of Hodge index theorem for n = 2 Alexandrov uses a
corresponding geometric inequality of Minkowski). The second proof by Alexandrov (see
[Al]2) appeals to the elementary theory of second order elliptic operators. We shall see in
§2 that a modern reedition of Alexandrov's proof (exterior products of differential forms
instead of mixed discriminants of quadratic forms) yields the Hodge-Teisdsier-Hovanski
inequality as readily (even faster) as it yields the Alexandrov-Fenchel inequality (for n =2
Alexandrov's argument is essentially equivalent to Hodge's proof of his index theorem).

0.2.B. Moment map, Legendre transform and the implication (+) = (*). A variety V is
called roral if it admits an isometric (for the metric induced from Py x P D V) action of
the torus T™. Such an action induces what is called the moment map M : V = RN which is
defined with the induced symplectic (Kihler) form on V (see 3.2.). Similar (moment)
maps, also denoted M, are defined for V| and V2. One shows (see 3.2.) that M preserves
volumes (up to a normalizing constant) and that the image M(V) is the Minkowski sum of
the moment-images of V1 and V»,

M(V) = M(V1) + M(V2).



Thus (*) = (+) for toral varieties V. On the other hand one knows (see 2.4. and 3.3) that
for any pair of convex polyhedra X1 and X» in IR with vertices in the integral lattice Zn
RN there exists a toral variety V such that M(Vj) = X; for i = 1,2. Using this along with
an approximation of convex sets by polyhedra with rational vertices one derives (*) from
(+) for all convex subsets in IR,

0.2.B1. REMARK. The correspondence between toral varieties and convex polyhedra
goes back to Newton and Minding (see the discussion by Hovanski in chapter 4 of [Bu-
Za)). The relation between (+) and (*) was discovered by Teissier and Hovanski (see [T]
and [B-z]). The approach using the moment map is due to Amold and Atiyah (see [At]2).

0.2.B3. The action of T on V can be complexified to an action of (CX)? = T x (R 1)"
on V (see 3.2.). Then the restriction of the moment map to the (R 1)“-orbits can be

identified with the Legendre transform for the Kdhler potential on V (see 3.2. and [At]p).
Note that this kind of Legendre transform is built in into Alexandrov's argument as it
applies to supporting functions of the convex sets in question (see [Al]7).

§1. Legendre transform, mixed volumes and Kdhler forms. Consider a Cl-function f on a
linear space L and let us interprete the differential of f as a map of L into the dual space
L', say Df: L — L' (If L is a Hilbert space one can use instead the gradient map L —» L
for x — gradxf that some people find more geometric).

Recall that a map ¢ : L — L' is called monotone increasing if

<@(x1) - 9(x2), X1 - x2>20

for all x1 and x2 in L. One calls @ strictly increasing if the above inequality is strict for all
x1 and x2 # x]. It is obviou that every strictly increasing map is one-to-one. In particular,
if such a @ is continuous and L is finite dimensional, then @ is a homeomorphism. Also
observe that the map ¢ = D is (strictly) increasing if and only if f is (strictly) convex.
Thus we obtain the

1.1. Homeomorphism property. If is a strictly convex Cl-functionon R then the
map Df : R? — IRM is @ homeomorphism (onto an open subset in IR,
The following property is somewhat more exciting.



1.2. Convexity theorem. If f is convex then the closure of the image Dg (R") c Rn s

convex.
Proof. For an arbitrary function f on L denote by L'f < L' the set of those linear

functions y on L for which
f-y 2const>- oo, 1)

This means that the graph I't c L x IR lies above that of the function y-const, and so L 'f
contains the image Df (L) < L' for convex functions f. In factif y =d x 5 f then the graph

Hy c L xR of the function y(x) + f(xq) - y(x0) is tangent to the graph I'r c L xR at the
point (xo, f(xp)). Hence I'tlies above the hyperplane Hy for all y € Dg (L) in the case
where f is convex.

Next we observe the subset L f c L is convex, as the inequalities

f-y1>-ccandf-yp>-o0
obviously imply the same inequality for convex combinations of y; and y»,

f-(tyy + (1-t)y2) > - oo,

To conclude the proof we must show that L 'f is contained in the closure of D¢ (IRD).

This is equivalent to

inflidx gll=0
xeL

for the functions g = f-y satisfying the above (boundness away from - =) condition (1).
In fact, if (2) is violated and

lidx gll > € >0 forall x € L, then inf g = -eo as the following trivial lemma shows.

1 .2.A. Let X be a complete metric space and g : X — R a continuous function, such that
for every x € X there exists X' € x different from x, such that

g(x) - g(x') 2 € dist(x, x'),



where € is a fixed positive number. Then

inf g(x) =- oo,
X

1.2.B. Remark. The above discussion presents a tiny piece of the convex duality theory
going back to Legendre whose name is attached to the transform of f from L to Dg (L) €
L' by the map Dy,

£y =D, ")

The Legendre transform f of f is correctly defined for strictly convex functions f as Dr is
one-to-one. In this case f' also is strictly convex and satisfies Legendre duality relation Dy
= D_f ! under an appropriate (reflexivity) condition on L (which is obviously satisfied for

L =MRn),

1.3. Minkowski additivity of L 'f andDf(L). Ify; € L fl andyp € L f2 (see (1) above),
then, obviously) inf(f1+f2-y1-y2) > - oo, that is y1+y2 is contained in the Minkowski sum
L
fL dL ¢ .
orLf y and L f .

In other words

Ly +Ly €L, . )

It is equally obvious that

Df W+Dg, (D¢ 4 (L), 3)

as d(f] + f2) = df; + dfs.
Thus we obtain the following

1.3.A. Additivity. If fijand fp are strictly convex functions on IR, then

Df1+f2('R“)=Dfl('R")+ sz('R"). 4



1.4. Brunn-Minkowski theorem for convex functions f. Let [D2f]" denote the determinant
of the Hessian D2f of f ,

%

and note that [D2f]" equals the Jacobian of the map D¢ : IR? — IRn,
Therefore

Vol Dy (Rn) = [ D2 fn ®)
[Rn

for all strictly convex C2 -functions f on IR",

1.4.A. Remark. For an arbitrary (non-smooth) ccnvex function f one can define [D2f]" as
a measure on IR and show that

Vol L' =I[D2 fn
R0

Now we apply (Brunn-Minkowski) inequality (*) in 0.1.B. to D fl(lR“) i=1,2 and

obtain the following

1 .4.B. Theorem. Every two strictly convex C2-functions f and £2 on R" satisfy

1/n i n1/n
[J [Dz(f1+f2)]n] 2(1 [szl]) +[1 [szz]) P
R" R" R"

1.4.B1. Remark. This inequality remains valid for all convex functions on IR™. This can

1/n

be derived from (**) by a simple approximation argument or proved more directly using
(*) and 1.4.A.

1.4.C. Implication (**) = (*) for convex sets in IR, Let Y be a convex bounded open
subset in L' =R™ and define f (x) on L =IR" by

f (x) =log ljz exp<x,y>dy.



One checks by a straightforward computation that f is real analytic and strictly convex,
and that the map D¢ : IR? — IRP sends each x to the center of gravity of the measure

exp<x,y>dy on Y. It follows that
D¢ (Rn) Y.

To show that D¢ (R") S Y take a point xq such that the linear function <xg,y>onL'D>Y
has only one maximum point, say y, in the closure CIY c L' of Y. Note that these points
yo are exactly the extremal points of ClY. Now we look at the measures exp (Axq,y) dy
on Y and see that these concentrate at yg as A — o=. Hence, the closure of the image of Dy
contains all extremal points yo of Cl Y. Since the image D (R") c Y is convex, it
necessarily equals Y.

1.4.C;. Conclusion. Every convex bounded open subset Y in RM admits a surjective
diffeomorphism D¢ : RM — Y for some strictly convex C2-function f on R0, Thus (**) =
(¥*) for convex bounded open subsets. This trivially implies that (**) = (*) for all

convex subsets in IR1,

1.4.C2. Remark. There are many convex functions f with Df (R") =Y. For example,
instead of the Lebegue's measure dy on Y one can take an arbitrary measure du on Y,
such that the convex hull of the support of | equals the closure of Y. Then one sees as
earlier that D¢ (R?) =Y for

f(x) =log j exp<x,y>dp .
Rn

However, for every compact convex subset Y, there is a distinguished convex function f,
(which is non-smooth and not strictly convex), called the support function of Y, such that

L 'f =Y. This function is characterized by the homogeneity, fo(ax) = afy(x) for all o >
0

0 (as well as by convexity and the relation L 'f =7Y). It is easy to see that f, equals the
0
infimum of the convex functions f, such that L 'f O Y). Usually, one defines f, as the

infimum of the linear functions y (x) on L overally € L'\Y.
Our choice of f =log | exp is motivated by the Kéhler geometry in CPn (see 2.4.).



1.5. Kdhler formulation of (**). Let us identify IR2? with € in the usual way,
R2n-Rn@Rn=Rn@ ~/— | Rn=(n,

and let us denote by J : IR2n — IR2n the operator corresponding to the multiplication by
/-1 in €. We also denote by J the induced operator on vector fields and differential
forms on IR2n, We call an exterior 2-form @ on (R2n, J) positive if ®(3,J9) = 0 for all
vector fields @ on IR20 and call o strictly positive is if ® (9, J@) > O for all non-vanishing
fields 9. Say that w is a (1,1)-form if Jo = w, that is ®(J91, J32) = (91, d2). Since J2 = -
Id and w is antisymmetric, this is equivalent to the symmetry of the form h defined by
h(d1, d2) = (31, JA2). Note that such a  is positive if and only if the (quadratic) form h
is positive semidefinite.

Recall that the second differential H = D2f of a function f is the quadratic form
defined by the formula

H(91,01) = 91(92f)

for all translation invariant (parallel) vector fields 91 and d2, where of stands for the (Lie)
derivative of f along 9.

Another useful second order differential operator, now from functions to exterior 2-
forms, is

f - o =dJdf,

where d is the exterior differential first applied to f and then to the 1-form Jdf.
A straightforward computation expresses dJd in terms of D2 by

h=H+JH (6)

where H = D2f and h is defined along with o = dJdf by h(31,02) = (91, J97). Note that
the definition of h on the left hand side of identity (6) uses only J while the definition of H
via D2 needs the affine structure of IR2n,

Since the form H is symmetric, the form h also is symmetric as well as J-invariant.
Hence, the form w = dJdf is (1,1) for all functions f on R2n,
Let us divideR2n=Rn @ ~/— 1 IRn by the n-dimensional lattice A/— 1 2" and denote
by V = IR0 x T™ the resulting manifold for the torus



10
™=+/-1Rn/+/-1 Zn

The notions of a (1,1)-form and of positivity descend from IR2 to V along with the
operator J which acts on the tangent bundle of V. Now we can formulate the following

1.5.A. Brunn-Minkowski inequality for T®-invariant forms on V.
Let w1 and w; be exact positive (1,1)-forms on V which are invariant under the natural
Tn-action on V. Then the top-dimensional exterior power (w1+w))" satisfies,

1/n 1/n 1/n
(erre?) = (o)« (J03),

Let us show that (***) is equivalent to (**) in 1.4.B. First we prove the implication
(¥**) — (**) by relating to each function f on IR? the form w on V which is the djd f of
the pull-back f of f to V for the projection V — IR1 = V/T, It is clear that

n

Jo"_
= R’n[D2ﬂ"

for all f on R™ and that  is positive if and only if f is convex. Since w = de? itis an
exact (1,1)-form and so (*¥¥*) — (*¥),

To prove that (**) — (**¥) we start with an exact (1,1)-form ® on V. The
exactness obviously implies that @ vanishes on every T?-orbit in V. It follows that the
associated quadratic form h admits a unique decomposition

h=H +JH

where H is induced from a quadratic form H on IR, The equality dw = 0 implies (by a
straightforward computation) that

d1H (d2, 93) = 92H(d1, 93)
for all parallel fields 91,02 and 93 on R, Hence H = D2f for some function on IR? which

is convex as @ is positive.

Hence, (***) does follow from (**).
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i
1.6. Mixed volumes. Let us use notation y! for the monomial yllu. ykk, where y =

(¥1,---,yk) is a string of variables and I = (iy,...,ik) € ZE denotes the multiindex with
non-negative integer entries. We denote by IIl = ij+...+ix the degree of y! and observe that
the monomials {y!}ni=n constitute a basis in the space of polynomials in yj,...yx of degree
n. Next, we write Iy = ijy+...+ikyx and observe that (by a trivial argument) the
polynomials{(Iy)"}ni=n also constitute a basis in the space of polynomials. In other words
every monomial is a linear combination of some Iy with universal coefficients. For
example,

y1y2 = 12((y1+y2)? - yf- y22)-

Similarly, for strings of differential 2-forms, Q = (®1,.... , Wk) we write

i i
Ql=m11/\.../\m k

and we are interested in the integrals I QI, where dim V = 2n = 2IIl.
v

We note that every such integral is a linear combination of the integrals

| dQ)" for IQ = ijo1+...+HkWy,

with the above universal coefficients.
Now, let V=R x T" and y,...,wk correspond to convex bodies Yj,...,Yx. Namely j

=dJdfj for j = 1,..,k where fisa smooth T -invariant function on V, such that the
corresponding function on IR" is convex and D £ (RmM) =Yjforj=1,..k.

1.6.A. Proposition-Definition. The integral | QI, where Ill=n only depends on Y =
A4
(Y1,..., Yk) but not on a choice of the functions fj. This integral is called the Ith mixed

i i
volume of Y1,..., Yk, and denoted [y'] = [Y 11“, Ykk]
Proof. By the previous discussion each mixed volunie is a universal linear combination of

the volumes of the Minkowski sums I'Y =i;Y1+...+ixYx where iX denotes X+X+...+X.
1

1.6.A1. Remark. As it is clear from this definition, the volume Vol(IY) expands in the
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usual way into the sum of mixed volumes. For example,
n ion—i
Vol(Y1+Y2) = [(Y1+Y2)"]= = b .[YlY > ]
i=0

n!
where bi = jr(n —)! .

In order to state the Alexandrov Fenchel inequality coricerning mixed volumes
we need the following notion of convexity for real functions on the discrete simplex

k
n

k

-1
={le Z

A Il =n} cRk,

In other words, Al:, - 1is the set of multiindices (it,...,ix) with ij+...+ix = n. We say
that a function / (I) is I-concave on A]:] ~ 1 if the restriction of I to every line parallel to

one of the edges of Alr(1 -1 is concave. For example, if k-1 = 1, then this is the usual

concavity,
1(Fadv) 232 viay

1

for Iy =(v, n-v) € Aq

and all those convex combinations, where %avlv lies in

AL (i.c. is integral).

- k(k-1
In general, Al; 1has % edges. A line parallel to an edge is given by fixing k-2

(out of k) coordinates (i,...,ix). For example, a line parallel to the "first" edge is given by
fixing the last (k-2) coordinates i3,14,...ik. If i3+i4+...+ix = m < n, then this line is {v, n-
m-V, i3,...,ik} for v = 0,1,...,n-m, and the 1-concavity condition on this line amounts to
the above (7).

1.6.B. Alexandrov-Fenchel theorem. Let Y = (Y1,...Yx) be a sequence of convex

bounded open subsets in R, Then the mixed volumes [Y!] for \ll=n are positive and the
function

ly(D = log [Y1]
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is I-concave.

Remark and corollaries. 1 .6. By. The mixed volume [Y] for 1 = (i1,...,ix) is bounded
from below by the following weighted product of the volumes of Y1,..., Yk,
bt iy
n n
[Yg=(volYy) ,...,(VolYy) . (8)

P

i
In fact, every 1-concave function I(I) (obviously) satisfies I(I) 2 —nl- I(n, 0,...,0) +

i i
+T21(o, n, 0,... ,0) + Tkz(o,.. .,0,n).

1.6.B2. Inequality (8) for k=2 reads

i n-—i

i ,n-i n n
[¥i v} ]Z(VolY D" (VolY )

which implies the Brunn-Minkowski inequality as

Vol (Y +Y2) = 5b [YiyPi
i 1[ 1 2 ]

1.6.B3. I do not know if /Y(I) is a concave function in L.
1.6.B4. We shall prove the 1-concavity of log[KI] along with the following

1.6.C. Alexandrov-Fenchel inequality on compact manifolds. Recall that the mixed
volume [Y]] is defined as the integral {I Ql, where the string of 2-forms,

Q = (wy,...,0x) on V =IR1 x TN, corresponds to convex sets Y1,...,Yk in IRD.

I
Thus the Alexandrov-Fenchel theorem amounts to 1-concavity of log [Q for exact

positive (1,1)-forms y,...,wk on V. This is proven in §2 where we start with the

following result concerning compact manifolds V.

1.6.Cy. Theorem. Let V be a compact complex manifold. Then for every sequence of
strictly positive closed (1,1)-forms Q = (04y,...,0k) on V the function



