}{- 1369 | | $13.95
THE GIANT B0O0OH OF

COMPUTER
SDFTLIJFIHE

ey, “ \ \\s
Step-by-stop guide to
¢reating your own computer programs!

EOITURS OF 73 mHGHZINE :

THE GIANT BOOK OF

COMPUTER
SOFTWARE

r—

8360879

THE GIANT BOOK OF

COMPUTER
SOF TWARE

BY EDITORS OF 73 MAGAZINE

& }g., =

IlllllllIIIHMINIIIIIIIIHIIIIIIIHHIUIINHI

88888888

' TAB BOOKS Inc.
TAB BLUE RIDGE SUMMIT, PA. 17214

FIRST EDITION
THIRD PRINTING
Copyright © 1981 by TAB BOOKS Inc.
Printed in the United States of America
Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.
Library of Congress Cataloging in Publication Data
Main entry under title:
The Giant book of computer software.
“TAB book #1369.”
Includes index.
1. Electronic digital computers—Programming.
I. 73 magazine for radio amateurs.
QA76.6.G5 001.642 80-28843

ISBN 0-8306-9627-X
ISBN 0-8306-1369-2 (pbk.)

8360879

Contents
*
Preface 7

1 Introduction to Computer Languages 9

First, the Computer—Machine Language—Assembly
Language—High-Level Languages—Meaningful Conversations
with Your Computer—The Basics of BASIC

2 The SoftArt of Programming 29
Phase 1: Building Blocks—Phase II: Structured Programming—
What's Next?—Finishing the Program

3 Advanced Programming 71
Number Fun on Your Micro—To Err is Human—Baudot Message
Formatter—A Driver Routine for the Heath H-14 Line Printer—
Backward Branch for the 6800—Music on the Micro—Debugging
KIM—A New QUBIC Program—A Baudot Monitor/Editor
System—The Kalculating KIM-1

4 Electronics Programming 131
Integrated Circuit Cooling Program—Design-a-Notcher—555
Timer Calculator—Low-Pass Active Filter—High-Pass Active
Filter—Bandpass Active Filter—Butterworth LC Filters—T and Pi
Attenuators—SWR Calculator—Intermodulation Spurs—LC
Reactance Calculations—Series Parallel Calculations—Power-
Supply Calculations—Printing Purchase Orders—Printing Wire
Lists—Practical PLL and Timer Circuits—Computer-Assisted In-
struction

S Antenna Programming 187
Computer Designing a Log Periodic Antenna—Dipole Designer
Program—A Program to Aim an Antenna—Computerized Loop
Antenna Design—Predicting Phased Array Performance with a
TRS-80

6 Ham Radio Operating Programs 223

10

Calculating Orbital Crossing Data—Ground Station Antenna
Bearings—Contest Duplicate Checking—How to Use It—DXCCin
One Sitting—Computerized Logbook—DX Delight—Time-
Sharing via a Repeater—The 22S Programmer Program—The
Micro Duper—Computerized QSO Records—Net Control
Program—Another Contest Control Program—The New Ham
Programmer

RTTY Programs 317
RTTY Filter Design Program in BASIC—How to Write a RTTY
Program—TryaKIM-1onRTTY ’

SSTV Programs 343
Picture Titling—SSTV Pattern Generator—Micro-Enhanced
Pictures—More Computerized Slow Scan

Game and Novelty Programs 411
A No-Cost Digital Clock—Computerized Global Calculations—A
Depth Charge Game—Nuclear Attackl—A Secret Weapon for

Road Rallies—Do Biorhythms Really Work?

Combining Some Hardware with Software 447

An Affordable Keyboard and Software—A Computerized Antenna
Rotator

Index 499

Preface
_

Now that you own a microcomputer—or even just a programmable
hand calculator—what are you going to do with it? Do you know
how to program it? Chances are that you're a tenderfoot with
software—the programs. If computers themselves have lost their
mystery, software somehow still manages to baffle most com-
puterists or prospective computerists.

This book will take you by your hand through programming.
You'll find plenty of examples to guide you. And every example has
a blow-by-blow description of what the computer program is doing
in each program line. This is an excellent way to learn about
software while having some fun, too.

No matter what you're other interests are, the programs in
this book offer you a little bit of everything. And don’t forget that
with a little work here and there, almost any program can be
modified for a different situation from the one for which it was
originally written. Good luck!

Chapter 1
Introduction To Computer Languages

e S o

Anyone who wants to use a computer has to have a way to
communicate with it. This is a simple introduction to some of the
languages which are used for that purpose. It is intended for rank
beginners, so all of the programmers, software freaks and
computer hot dogs in the audience might as well stop here. For
anyone else, I'm going to try to keep everything in English (which
is not a computer language, unfortunately) and avoid as much
computerese as possible. Sohere goes.

One might start by asking, “Why have computer languages at
all?” Back in the dark ages 25 or 30 years ago they didn’'t—the
machines were wired up to do a certain thing and that’s what they
did. But, somewhere along the road, some bright fellow realized
that it would be much more efficient if you could feed the machine a
fairly long set of instructions and let it follow them. This also made
for much greater flexibility, because you could give the machine
different sets of instructions. These instructions are what a
computer language communicates, and this section will cover
some of the more common ones, to wit: Assembler, BASIC,
FORTRAN, PL/1, COBOL and a little bit about some of the more
specialized ones. But first let’s look a little bit more at the nature of
the beast we're dealing with.

FIRST, THE COMPUTER

It is helpful to think of a computer as a glorified electronic
calculator. In fact, some of the more modern calculators really are

9

computers. But let’s look at the average four-function calculator. It
has a display, which is called an output device in computerese, and
it has a keyboard, which is an input device. To do anything with it,
you have to enter the numbers through the keyboard and then enter
what you want done with them, be it to add them or whatever.

But suppose you want to do a mortgage calculation—say,
figure out what your interest payments and principal payments are
going to be each month for the life of the 20-year mortgage. This
means that you're going to have to do a very repetitive calculation
240 times. It is to avoid this sort of hassle that real computers (and
some fancy calculators) have stored program capacity. A stored
program is just a set of instructions inside the machine which get
done without your standing there pushing all of the buttons each
time. But now we have to get this set of instructions inside the
machine, and that is where programming languages come in. We
need a way to communicate the instructions to the machine.

MACHINE LANGUAGE

In the case of a calculator, this isn’t much of a problem. The
instruction set (list of all of the instructions which the machine is
able to follow) is hard-wired in. If you want it to add, you push +.
This is obviously not too good an idea for a large computer, because
the number of buttons gets pretty large. Besides, you tend to run
out of symbols, which makes everything even more confusing. So
we need some sort of language. The simplest one is called machine
language and is the closest we can get to what the machine actually
speaks. However, computers and other digital machines run on
high and low levels of voltage. This is rather hard to see, so we
usually represent it with ones and zeros, or on and off lights. The
whole thing is like trying to communicate using RTTY
(radioteletype) but doing it by ear instead of with a machine, which
is to say that it’s aroyal pain. Anyone who’s into interpreting things
like 0100110101100001 and so forth can really get off on it, but for
most of us there’s gotta be a better way. Fortunately there is.
Incidentally, those switches and lights on the front panel of any
early microcomputer are used to communicate with the thing in
machine language.

ASSEMBLY LANGUAGE

The next sort of language developed, and the one which is
most widely available for microprocessors these days, is the
assembler. Each type of computer has its own version; what itis, in

10

short, is machine level logic—but using symbols and normal
numbers rather than ones and zilches. Assembler is related to what
you do with a calculator in fact, any of you who own or use HP
calculators have been using a version of assembler language
usually known as reverse Polish notation. With an assembler
language, you specify what number you want, where you want it
put and what you want done with it; for example (to use HP
assembler): “12, ENTER (which puts it in the region where the
arithmetic is done), 2, x ” multiplies 12 times 2 and comes up with
24. All assembler languages work this way, although many of them
have dozens of commands and hundreds of locations where things
can be put or obtained. This sort of computer language has a lot of
advantages. It’s very efficient not only where memory is con-
cerned, but also with regard to execution time. The assembler (the
program which translates it into machine language) doesn’t take up
much memory either, which means it can be used in a microproces-
sor that doesn’t have much memory (and memory costs like the
devil, even these days). Using assembler, you can also anticipate
situations where the machine might do something unexpected,
since you're on the machine’s logical level. Of course, it’s got its
problems too. It’s hard to learn, not easy touse well, hard to debug
(find errors) and is “machine dependent,” which means that each
machine has its own. To sum it up, a lot of people don’t like to have
to write: “12, ENTER, 2, x.” They’d rather write “A =12x2.”
This is what high-level languages let you do, along with all sorts of
other convenient things. For this reason, almost all programming
these days is done with one of the various high-level languages, and
the section will cover some of the more common ones.

HIGH-LEVEL LANGUAGES

First of all, a high-level language is a computer language that
is based on some combination of English and algebra. So, to write
two plus two you would usually write “2+2.” To tell the machine to
print, you write PRINT, WRITE or something similar. The one
thing to watch out for is that, although there are many different
ways of writing one thing in English (and to a certain extent in
algebra), a high-level computer language has a very narrowly
defined structure and vocabulary. This means that the computer
equivalent of “I ain’t got none” will be rejected. In other words, you
have to be very careful when writing any sort of program for a
computer, because errors (the computerese term is glitches) get
caught faster than they would be by an old-fashioned high school
English teacher.

11

Continuing the comparison with human languages, there are
lots of different ones for computers, too. At first each company
developed its own; now many of them are standard and thus can be
used on any machine with few, if any, changes—unlike assembler
languages. We still have a lot of computer languages, though. For
example, the last time I checked the documentation, there were
something like 35 different high-level languages available for use
with the University of Michigan computer system. The reason for
having so many is that each language is designed to do some
particular thing well (in jargon, they are problem-based rather than
machine-based). This means that one language is good for
mathematics (also called number-crunching), one is good for
electronic circuit design, another for library use, and so forth.
There are also a couple of general-purpose languages. These
happen to be the most popular for obvious reasons.

It would be a pain to have to spend a few weeks mastering a
new computer language every time you wanted to do something
different with a computer, not to mention that you have to buy (or
write) a special translating program (called a compiler) for each
one, and that can get very expensive (much more than the cost of
the computer itself). So let’s look at some useful, fairly general
purpose languages.

BASIC

BASIC, which stands for Beginners’ All-purpose Symbolic
Instruction Code, was developed at Dartmouth College in 1965. It
was designed for people who knew nothing about computers but
who wanted to use them. Few dyed-in-the-wool programmers care
much for BASIC, but most non-programmers love it. It’s based on
algebra and the non-algebra parts of it are in plain English. For
example, to enter two numbers into the machine, multiply them,
divide one by the other and print the results, you would write:

1INA,B
2LETC=A*B
3LETD=A/B
4PRINTC,D

(*is the standard symbol for “times” on a computer)

This language has quite a few advantages. It's easy to learn,
easy to use, and there are lots of books around which help people
learn it. Equally important, there are lots of programs already
written and published in it (these are called canned programs), and

12

all microcomputers can use it. The compiler (remember, that’s the
program which translates the things you write into the machine’s
language) doesn’t take up too much memory either, which means
that BASIC is suitable for small computer systems where memory
is limited. A final advantage is that BASIC is fairly flexible,
especially the advanced systems. You can do many—if not
most—of the same things with it as you could do with FORTRAN
or PL/1, although the programming effort might be greater.

It does have some disadvantages, though. BASIC has no
mnemonic variables. This means that you have to remember that A
stands for current, E for voltage and so on. In a more advanced
language you could write AMPS, EMF, etc. This isn’t so bad if
youre working with standardized symbols, but gets to be a
disadvantage when you try to remember which was accounts
payable and which was accounts receivable. Also, BASIC is
somewhat limited as to what you can do with input/output. This
only makes a difference if you are working with a big system that
gives you lots of choices; it isn’t of too much concern for a home
computer system or a small business one. Finally, BASIC is
structured somewhat along the same lines as FORTRAN, which is
the oldest computer language still in use. This means that is does a
lot of things in more difficult and more roundabout ways than some
of the newer languages, like PL/1. For example, its “either-or”
choice is rather cumbersome to write. It’s still a great language to
play around with, though.

FORTRAN

FORTRAN is probably the best known of the various
computer languages, partly because it’s one of the oldest. The
name stands for FORmula TRANslation, and it was developed by
IBM back in the early 1950s. It and the B-Zero language developed
by Univac were the first high-level languages used. No one uses
B-Zero today (few have even heard of it), but FORTRAN is
probably the most widely used computer language in the U.S. Of
course, the FORTRAN we use now isn’t the same as the
FORTRAN introduced back in 1957—just as the English we speak
now isn't the same language as the people in England spoke back in
1066. There have been three official versions of FORTRAN:
FORTRAN (the original), FORTRAN II and FORTRAN IV.
Number three got lost in the middle somewhere. Most computers
thesedaysuse FORTRANTIV.

Anyway, as you might guess from the name of the beast,
FORTRAN is basically a scientific computer language; it was

13

developed to make it easier to solve mathematical-type problems
for science and engineering. Over the years the language has
expanded to the point where it is usable as a general-purpose
language, so it can do a lot more than simply crunch numbers.
Moreover, because it's such a popular language, there are
who-knows-how-many programs written (and sometimes pub-
lished) in it, which makes it much easier to solve a given problem
(since you can frequently just type in a canned program). The same
structural problems encountered in BASIC are part of FORTRAN,
but these have already been covered. Perhaps more important for
anyone who wanted to use FORTRAN on a microcomputer, the
compiler (remember that’s the program which translates it into
machine language) takes up much more memory than a BASIC
compiler, though much less than one for most other high-level
languages.

While FORTRAN was developed for scientific use, COBOL
was developed for business use. It’s the language generally used by
the U.S. government, so it’s got a pretty wide circulation.
Needless to say, many businesses use it, too. From the little work
I've done with it myself, it seems that you spend most of your time
defining what your printout is going to look like and what the
information which you feed into the thing is going to look like (the
jargon for this is format definition). It also takes lots more memory
than one would probably want to pay for in amicrocomputer, unless
he wanted to do subcontracting for the government.

Up until the early 1960s, most computers were either
scientific- or business-oriented, and amachine which was designed
for one didn’t usually work too well for the other. ThenIBM started
making their general-purpose machines, and most other people
followed suit. At about the same time, people started to worry
about a general-purpose computer language. A number were
developed, of which my favorite (just for the name) is MAD
(Michigan Algorithmic Decoder) which was brought to us by the
folks at the University of Michigan Computing Center. Then IBM
gotinto the act, and, lo and behold, out popped PL/1 (Programming
Language One). The best description that I can think of is that PL/1
was designed to out-fortran FORTRAN and to out-cobol COBOL
all at the same time. It does a pretty good job of it, too. I'm always
amazed at all of the nice things you can do with PL/1; to use the
computerese phrase, it has more bells and whistles (extra options)
than you can shake a stick at. Unfortunately, it also uses more
memory than you can shake a stick at, which makes it normally too

14

expensive for microcomputer use (or even time sharing use if you
have to watch your costs).

To give an example of the sort of nice thing the language can
do (among others) it lets you write a simple either/or statement (if
this is true, do one thing; otherwise do this other thing),
whereas to do that in most other languages you have to play
hopscotch with the line numbers. In short, PL/1 is a great
language.

Another new language, again by IBM, is APL. I will confess
here and now that I've never used it, so what I say is taken from
what people who have used it have told me. This is a very powerful
language; it can do in one line what most other languages require
five or more to do. Itis not yet widely used.

I mentioned a while back that, in addition to the general-
purpose languages I've discussed so far, there are quite a few
special-purpose ones. For a hobby user (or would-be user) these
aren’t too important, but just to be more or less complete I'll
mention a few that are good with which to impress people (besides
being good to know about if you tend to be around computer hot
dogs who like to talk about such things). There is RPG, whichis a
Report Generating language, and therefore much used for business
and that sort of computing. Then there are several languages used
to write simulations. A simulation is like a computer game except
people take it seriously. These languages are things like
GASP,GPSS and so forth. There are a fair number of languages
used for crunching words instead of numbers: SNOBOL, SPITBOL
and soforth.

As a brief review, one needs some sort of language to give a
computer instructions. You can operate on the machine’s level
(called machine language) and feed it ones and zeros. Or, you can
stay on the machine’s logical level but use decimal numbers and
abbreviated commands. This is called an assembler language, and
it always requires a separate program for translation into machine
language. Finally, you can use a combination of human logic and
normal words and symbols, which is called a high-level language.
This requires a program to translate it into machine language
again, and such a program is called a compiler. The principal
advantages of high-level languages are that they are easy to learn,
easy touse, and are the same for any machine. They are not nearly
so efficient as assembler language from the computer’s point of
view, but they are much more efficient from our point of view—and
that’s usually what counts.

15

MEANINGFUL CONVERSATIONS WITH YOUR COMPUTER

The computer freak now has a wide choice of micro kits,
input/output devices, and services to choose from, but the big
problem remains: How does one COMMUNICATE with his
computer? Ah, yes, you have just brought home your new
microcomputer and plan to use it to store data. A simple
application? Yes, but there your micro sits, not calculating a thing.
Something is missing—a method of “talking” to, or programming
the machine, thus enabling it to perform a meaningful task.

The Language Processor

The missing link is the language processor (LP). An LP is a
program that allows a computer user to form the unique set of
machine instructions, which are the binary numbers that direct
every machine function. The LP is to a computer what the
keyboard is to your pocket calculator; it is a man-machine interface
that bridges the gap between human requests and machine action.
Without a keyboard, your pocket wonder is useless unless you like
to collect big IC chips. Without an LP, a computer programmer is
forced to form and insert into memory every binary code that forms
a program, requiring a knowledge of the internal construction and
machine codes unique to every computer.

Programming Your Black Box

A computer performs its task by executing a series of machine
instructions that reside in the memory of the processor. The
ultimate goal of any programmer is to relate the problem to be
solved in terms of the machine instructions that the computer
understands. This goal may be reached in two ways: by inserting
each instruction into memory by hand, using the front panel
switches, after a tedious process of forming the correct codes; or
by using an LP to form the codes for you. This LP may be an
assembler, compiler, orinterpreter. This article examines, in simple
terms, the function of each type of LP, the associated trade-offs,
and the benefits of each. Before starting, however, let’s take a
quick look at how programming works without the LP, bearing in
mind that the final goal of any LP is to produce the binary machine
code that only the machine understands.

Machine Language

Every computer, be it an IBM 370 or Motorola M6800 micro,
has a unique set of instructions, consisting of binary codes that

16

