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Preface

This series of Monographs on Numerical Analysis owes its existence
to the late Professor D. R. Hartree who, defying the walrus, thought
that the time had come to talk of one thing at a time, at least in this
field. Indeed the various areas of Numerical Analysis have expanded
so rapidly that it is now virtually impossible to write a single book
which gives more than a very elementary introduction in all fields.
We even need a variety of books on each single topic, as in other
branches of science and mathematics, to meet the various require-
ments of the undergraduate, the research student, and those who
spend their working life in solving numerical problems in specific
contexts. _

Numerical analysis was introduced in 1959 into the Oxford under-
graduate mathematical syllabus, and it seemed to me preferable to
talk about numerical linear algebra in the first place and to leave
for subsequent courses the theory and practice of approximation
and its applications to the solution of differential and integral equa-
tions in which, of course, linear algebra plays a large part. The material
of this book is therefore based on this first set of lectures, and I
generally cover some two-thirds of it in about 28 lectures, treating
less thoroughly Chapters 4, 5 and 7 and the later parts of Chapters
8, 10 and 11.

I had considerable difficulty with Chapter 2. Instead of introducing
linear equations via vector spaces, linear transformations and matrices
I started with linear equations and tried to show how the algebra of
matrix manipulation ‘hangs together’ and simplifies not only our
notation but the proofs of our numerical operations. Though this
does not give a beautiful mathematical theory I made the deliberate
choice for three reasons. First, the Oxford undergraduates learn the
mathematical theory from other lecturers. Second, I think that with
that theory they do not easily acquire the facility with matrix
manipulation which they will need in numerical work and even for
the study of more advanced theoretical texts. Third, the Director of
a Computing Laboratory must also consider the engineers and scien-
tists who use the computer to solve numerical problems, and in my
experience these workers have some antipathy to and even fear of
words like ‘space’, ‘rank’ and even ‘matrix’ which, they feel, represent
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strange and impractical mathematical abstractions. And yet the
use and manipulation of matrieces, in the elementary form given here
and which is sufficient for many practical purposes, is really very
easy! This is true also of ‘norms’, introduced in an elementary way
in this Chapter and which are so valuable for measuring the conver-
gence of series and iterative processes.

And of course mathematical rank and matrix singularity have less
importance in practical work. Here the data is rarely exact, and
instead of a matrix A we have to consider the matrix A4 6A, where
we may know only upper and lower bounds to the elements of SA.
Even if A is exact (in a ‘mathematical’ problem) our numerical
methods involve arithmetic which is rarely exact. We must face the
fact, and numerical analysts do not apologise for it, that the question
of error analysis is profoundly important and that for this purpose
we must investigate very closely the details of the arithmetic. The
present tendency of error analysis, in all branches of numerical analysis,
largely refrains from following through the effects on the solution of
each individual error, but accepts these errors and tries to determine
what problem we have actually solved. Qur methods are then evalu-
ated according to our ability to perform the appropriate analysis and
to the size of the upper bounds of the perturbations.

This is considered in Chapter 6. Chapters 3 and 4 study various
direct processes for solving linear equations based on elimination and
triangular decomposition, and the close relations which exist between
the various methods. Many of these, together with the orthogonalisa-
tion methods of Chapter 5, might well be discarded for practical
purposes, but they have some mathematical interest and considerable
literature, and I thought it desirable to collect in one place a summary
of the relevant facts. In Chapter 7 I consider very briefly the work and
storage requirements for some of the methods, with particular
reference to automatic digital computers. Chapter 8 gives an intro-
duction to a class of iterative methods for solving linear equations,
whose recent developments, particularly for the large sparse matrices
relevant to elliptic differential equations, have been brilliantly
expounded by R. S. Varga in his ‘Matrix Iterative Analysis’ (Prentice-
Hall, 1962).

Chapters 9 and 10 discuss the determination of the latent roots
and vectors of general matrices, both by iterative methods and by
the search for similarity transformations of various kinds, associated
with the names of Jacobi, Givens, Householder, Lanczos, Rutishauser,
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Francis and others. These have been further developed by J. H.
Wilkinson, together with a systematic error analysis whose general
features are indicated in Chapter 11, and which are described in
comprehensive detail in his forthcoming ‘The algebraic eigenvalue
problem’ (Oxford, this series, in press).

There are, of course, some omissions which will displease many
students and teachers. For example I have said very little about
computing machines, and have not made detailed distinction between
the error analysis of ‘fixed-point’ and ‘floating-point’ machine
arithmetic. Coding and programming are mentioned only briefly
in the introductory chapter, with no details of languages like
FORTRAN or ALGOL. My personal opinion is that these things,
while relatively easy to learn and master, take much space to describe
and the mathematical undergraduate needs essentially the principles
expressed in a book which is reasonably short and correspondingly
inexpensive. Those who teach ALGOL, moreover can easily use as
exercises the algorithms of this book, all of which, I hope, are ex-
pressed unambiguously in the language of English and of standard
mathematical notation. In a few cases the algorithmic language
would simplify the description, and in these cases it is interesting to
note that hand computation is relatively tedious; the method of § 30
in Chapter 4 is one example of this. There is, of course, some advantage
in using digital computers at the undergraduate stage, and I hope to
introduce this at Oxford when we acquire facilities which are not
completely saturated by the demands of research.

With regard to notation I have used the prime rather than the super-
script T to denote matrix transposition, and usually capital letters de-
note matrices and lower-case letters denote vectors, in ordinary italic
type. Exceptions are the row or column vectors of a matrix, usually
denoted respectively by R,(A) and C,(4), and I fear that consistency
lapses for the residual vector, sometimes called r and sometimes R,
I suspect for personal historical reasons. All my matrices, incidentally,
have distinct latent roots (which word I use consistently instead of
eigenvalues) and consequently a full set of independent latent vectors,
with obvious simplifications in the theory and no considerable
restriction in practice.

Most of the material is already published in learned journals, and
most books on numerical analysis have some account of parts of it.
Few similar books, however, are available in English. Predecessors not
mentioned. in the text include P. S. Dwyer’s ‘Linear Computations’
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(Wiley, 1951), written before the advent of the digital computer
and the advances in error analysis, and E. Bodewig’s ‘Matrix Calculus’
(North Holland Publishing Company, Amsterdam, 1959) which has
more and deeper theoretical treatment but perhaps fewer practical
details. More advanced books include those of Varga, the imminent
treatise of Wilkinson, and the latter’s just published ‘Rounding
errors in algebraic processes’ (HMSO, 1963), and I hope that my
readers will be able subsequently to benefit more eas11y from these
learned works.

It is a pleasure to record my debt to Dr. E. T. Goodwin, who read
the proofs and made several valuable suggestions; to Professor A. H.
Taub, who invited me to Illinois for a sabbatical semester in which I
found time to write several chapters; to the Clarendon Press, who made
a special and successful effort to produce this book in time for the
1964 examinations; and above all to Dr. J. H. Wilkinson, who read
all the first draft, made important criticisms and suggestions, and
from whom I have learnt much.

L. Fox
Oxford, January 1964
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Introduction

Numerical analysis
1. Tr1s book is concerned with topics in the field of linear algebra, in
particular with the solution of linear equations and the inversion of
matrices, and the determination of the latent roots and vectors of
matrices. Before embarking on our exposition it is desirable to make
some introductory remarks on the nature and general aims of numer-
_ical analysis, and on the computing equipment which will enable us,
without undue fatigue and in reasonable time, to obtain numerical
answers to our problems.
The numerical answer is our aim. The roots of the quadratic equation
22 4-2bx+4-¢ = O are
@y, Ty = —b+(b2—c)}, (1)
but we are concerned with the evaluation of z, and z, for given
numerical values of b and ¢. We might, as here, have a ‘closed ex-
pression’ for the answer, in which we merely have to substitute the
given numbers, the data of the problem. More commonly there is no
simple formula, but there may be an algorithm, represented by an
ordered sequence of numerical operations, additions, subtractions,
multiplications and divisions, which is known to give the required
result. The construction of such algorithms is one of the research
activities of numerical analysis.

2. But we must be careful with the phrase ‘required result’. An
answer is rarely obtainable exactly as an integer or the ratio of two
integers. Even for a simple problem like that represented by equation
(1) we shall have to compute an irrational number, or non-terminating
decimal, for most values of b and ¢. For example if b = land ¢ = —1
the required roots are —14-4/2, and if we want this as a single
number we have to specify in advance the precision of our result, that
is the number of figures which we should like to have correct. In the
decimal scale the number 4/2 is 1-41421356..., and if we specify a
precision of p decimals we have to round the number appropriately,
and in such a way that the error committed is as small as possible.

To do this we truncate the number to the precision required, in-
creaging by unity the last digit retained if the first neglected digit is
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5, 6, 7, 8 or 9. We thereby ensure that the maximum error committed
is not more than five units in the first neglected place, or half a unit in
the last figure given, or 0-5 x 10~?. To three decimals 4/2 = 1:414, to
seven decimals it is 1-4142136, and so on.

3. Even if the computation can in theory be performed with exact
integers, moreover, we shall find that our computing machine cannot
usually handle the large numbers involved in the arithmetic processes.
For example, if we are solving simultaneous linear algebraic equations
in 7 unknowns, in which the coefficients and right-hand sides are given
as p-figure integers, an exact process could give the results as the
ratios of two integers, both of which would contain np digits. In the
more practicable methods which we discuss in this book the integers
might contain p x 271 digits. If n is 20, which is by no means large in
practical problems, and p is say four, this number is of the order of
2x10%, and no computing machine can store numbers of this size
without complicating prohibitively the task of ‘programming’ and
increasing prohibitively the time of operation. :

If the coefficients are given as rational fractions, such as %, or as
irrational numbers like e, 7, 4/2 or sin 0-72 (radians), we shall have to
round them to a given number of digits. The problem we are solving is
then not quite the original problem, and one of our tasks will be to
decide how many figures we need to keep in the original data, and also
in the process of the computation, to obtain the required precision in
the results.

4. Problems in which the data are known exactly, either as integers,
rational or irrational numbers, I call mathematical. The author of such
a problem has a perfect right to ask for any degree of precision which
he needs for his purpose. On the other hand most problems with a
scientific context will involve data obtained as a result of measurement,
in some degree inaccurate, and our task now is to decide the worth-
whale precision of the answers. Such problems are called physical, and
it is self-deceptive to quote as answers more digits than those which
remain unchanged however the data is varied within its limits of
‘tolerance’. The ‘required result’ now becomes the ‘meaningful result’,
and our methods should decide this for us.

As a trivial example, if we are asked to compute sinz, and a
measurement of z gives the value x = }w10-005, we see that there is
a range of values of the answer, from about 0-7036 to 0-7106, and a
quoted result of 0-7071 has a possible error of 4-0-0085. It would clearly
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be stupid to quote more than three decimals in the result. We shall see
later that the precision of the answer compared with that of the data
varies considerably with the problem, and in complicated algorithms
our work of determining this might be formidable and challenging.

5. We note also that we would often prefer to use an algorithm,
rather than evaluate a closed solution, even when the latter exists.
In the field of differential equations, for example, the solution of the
first-order equation

dy 2y

p s e el (2)
is 142\},

—A(l_x) ta (3)

where A is an arbitrary constant to be fixed by the specification of y
for a particular value of z.

Now this is a useful formula for the computation of y for one or two
particular values of . But it is quite common to want a graph, or
preferably a table of values of y for a set of (usually) equidistant values
of z over a lengthy range. The calculation of the expression (3) is then
not trivial, involving the evaluations of a square root, an inverse
tangent, and an exponential function, in addition to one division and
geveral multiplications. In the computation of these elementary
functions, moreover, we shall either have to use some form of series or
to interpolate in mathematical tables, and the whole operation is
somewhat lengthy. We have numerical methods for solving such
problems, though they belong to a field outside our present interest,
which perform much less arithmetic and which produce successive
values in the table without ever knowing the closed solution (3).

6. The closed solution, of course, is extremely valuable for many
purposes, but unfortunately it can rarely be obtained in terms of the
so-called ‘elementary’ functions. For example an apparently innocent
change in (2), to the form

dy 2y
%—l—x‘=z’ - @

produces the more formidable-looking solution

1 p—
- (g (o).

This can hardly be called a solution at all, since we have no analytical
methods for evaluating the indefinite integral in terms of elementary
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functions, and some numerical process has to be used for this purpose.
We might just as well use our algorithmic numerical method for the
equation (4) without recourse to (5), and in fact the extra numerical
work in (4) compared with that of (2) is almost negligible.

7. Again, however, we should not ignore the possibility of obtaining
a closed solution, and it is very important that we should understand
the mathematics and mathematical methods for our problems, as well
as the numerical analysis and possible algorithms. In particular we
should try to decide in advance whether our given problem really has a
solution, that is whether there is an existence theorem for it. With the
development of automatic computing machines the mathematical
analysis is increasingly important, and it should never be thought that
the machine will do the mathematics for us.

Our algorithm may sometimes decide for us whether or not our
problem has a solution, or at least a unique solution. For example it is
usually the case that a set of simultaneous linear algebraic equations
has a unique solution when the number of equations is equal to the
number of unknowns. But it is clear that the equations

z =3
. +y ] ®)
42y = 6
do not define a unique solution, the second equation being effectively a
restatement of the first. If in the second of (6) the right-hand side were
a number other than six it is clear, moreover, that the equations would

have no solution at all. This is less obvious with the equations

z24+y+2z=a
r—y—z = f), (7)
2¢+4-4yt-4z =y

which have no unique solution for any «, § and y, and no solution at
all unless y = 3a—§.

With many equations, and with more digits in the coefficients, we
may have some trouble in this context, and the necessity for rounding
may produce a solution from our computing machine when in fact no
solution exists. We shall give examples of this in a later chapter and
show how our algorithm can help to decide the questions. In other
fields, notably in the solution of differential equations, our algorithm
may be less valuable in the determination of existence, and mathe-
matical analysis is essential.
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8. Summarizing, we can say that numerical analysis is concerned
with the production of numerical solutions to scientific and mathe-
matieal problems. Our aim is to find methods which are economic in
time, which produce the results to the accuracy requested in mathe-
matical problems, and which tell us how many figures are worth
quoting in physical problems. To the numerical analysis we should add
any mathematical knowledge we have or can find about the existence
of solutions, and in some sense our methods, like those of mathematics
itself, should be elegant!

As a rather trivial example of elegance we might consider the
formula (1) for the solution of quadratic equations. If b2—¢ is
reasonably small, and we compute its square root to a given number of
decimal places, the formula gives roughly the same number of correct
digits in both roots. But if ¢ is small, so that (b2—c)¥ = b+¢, where €
is small, then x, = —2b—e¢, x; = ¢, and z, is given accurately with
many more digits than x,. To avoid computing the square root to more
figures we use our mathematics to note that 2z, = ¢, so that z, = ¢/x,
and can be computed from this formula with a relative accuracy
similar to that of x,.

The loss of significant digits in subtracting large numbers is a
common phenomenon, and we use all possible methods to avoid or
mitigate the consequences thereof.

Computer arithmetic

9. There are two methods in common use for operating with
numbers in a computing machine. In both cases the numbers are
stored in registers of fixed length, so that we can retain only p digits
say, in any given number, and a number containing more than p
digits must be truncated or, with extra effort, stored in two or more
such registers. In what follows we assume that we are working in the
common decimal system.

With ‘single-length’ arithmetic, with p digits, we have either the
fized-point or the floating-point method of operation. In the fixed-point
method it is customary to limit the size of numbers which may occur
to the range —1 to +1, and any number outside this range must be
scaled appropriately by dividing by a power of 10. The programmer
must take definite steps to keep track of these scale factors so that the
correct result can finally be obtained.

Since our machine can only store digits we must turn the positive
and negative signs into quasi-digital form, and this we do with the
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convention that all positive numbers have their first digit zero. The
decimal point will normally be thought to follow this digit, so that in
a four-digit register we can effectively store three figures. The number
0924 will actually appear in that form, and the largest positive
number we can store is 0-999, the integer after the decimal point
being 10 —1 in a (p+1) register machine.

For a negative number = we store the complement 107+ —|x|, 5o that
the first digit is always 9, and the number —0-924 appears as 9-076.
All negative numbers have nine as the first digit, and the largest
negative number we can store is 9000, which is —1 in the ‘signed’
convention, the ‘fractional part’ representing the integer 102,

Itis easy to see that addition and subtraction, using the complements
of negative numbers, will always give the correct answers in the ‘signed’
convention provided that the result is in the allowed range. In fact in a
sequence of such operations the intermediate results are allowed to ex-
ceed the range. For example 0-126 —0-125 — 0-126 4-9-875 = 10-001.
The first digit is ‘lost’ and we are left with 0-001, the true result. Again,
0-125—0-126 = 0:125+9-874 — 9-999 — —0-001, again correct. The
sum 0-986 +0-125 = 1-111 cannot be allowed, however, and we would
have to store this in the rounded form 0-111 x 10%, remembering the
power of 10 involved. But

0-986+0-125—0-389 =0-986+0-125+9-611 = 10-722 =0-722,

and this is correct.

When we multiply together two permissible numbers the result is
certain to be within range. But the exact product of two numbers of p
digits has 2p digits, and we need two registers to store it exactly, a
so called ‘double-length’ accumulator. If we have to round it to single
length we commit an error of maximum amount 0-5x10~?, The
division a/b is out of range if 2 > b, but otherwise we can perform the
calculation. In a ‘single-length’ register the stored result will have a
maximum error of 0-5x10-?, unless the resulting decimal number
terminates in at most p digits.

10. In the floating-point system our numbers can be of almost any
size, and we store them in the form 10° x b, making space in our
register for both a and b. This representation is not unique, but we
standardize by choosing b in the range 0-1 < |b | < 1. For example the
number 1562 is stored as 0-1562 x 104, 0-001562 is given as 0-1562 x
10-2. Both a and b can be negative, and are stored with the signed
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convention, though a is always an integer and we can forget about the
decimal point in its register.

Here the user is not worried by scaling problems and the machine
automatically keeps track of the relevant powers of ten. ‘Overflow’ of
the accumulator is now almost solely restricted to the case of division
by zero, and otherwise the size of allowable numbers is governed by
the size of the register we allow for the representation of the exponent
a. We shall mention some other relevant facts about arithmetic in the
appropriate contexts.

Simple error analysis

11. The fixed-point and floating-point representations introduce the
ideas of decimal places and significant figures. Both the numbers 0-9246
and 0-0002 have four decimal places and would be stored in this form
in the fixed-point method. The first number, however, has four
significant figures whereas the second has only one significant figure.
The point about the word ‘significant’ is that, if these numbers were
obtained as a result of rounding with a possible maximum error of
half a unit in the last place retained, each has a possible absolute error
of 4+0-00005, but the former has a much smaller relative error. It is
correct to approximately one part in 20,000, while the number 0-0002
is correct only to one part in 4.

In the floating-point representation these numbers are stored re-
spectively as 0-9246 X10° and 0-2000 x 10—3. Here the number of
non-zero digits in the fractional part represents the number of signifi-
cant figures present, the three zeros in the second example being
inserted to fill up the register. If we had more significant information
about this value, for example that it was 0-0002329..., or 0-0002000
where the last three zeros are known to be correct, we could store it in
a floating-point form like 0:2329 x 10—2 with a small relative error,
-whereas the rounded fixed-point number 0-0002 has a small absolute
error but a large relative error. This, incidentally, does not imply that
the floating-point representation is superior. There are many factors
involved, some of which we shall mention later. We note immediately,
however, that in an addition like 0-9246 x 10°4-0-2329 x10-3 we
have first to express the smaller number in the rounded form
0-0002 x 10° in order to add it to the first, and we have had to
discard its last three digits.

12. We-shall need rules for assessing both types of error in simple
operations, so that we can extend them to complicated situations.



