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Preface

In the past fifteen years, significant progress has been made in the
solution of nonlinear systems, particularly in the areas of computing fixed
points, solving nonlinear equation systems, and in applying these methods
to equilibrium models. This progress has developed along two principal
lines : simplicial and continuation methods. Simplicial methods stem
from the pioneering work of Scarf on the approximation of fixed points.
As shown by Kuhn, the essential idea is the use of a simplicial approxima-
tion of the map as is used in the proof of Brouwer’s fixed point theorem by
Sperner’s lemma. Continuation methods originate in the the work of Kel-
logg, Li, and Yorke which converted the nonconstructive proof by Hirsch
of Brouwer’s theorem into a constructive algorithm.

The development of these two lines of approach has been parallel in
many respects. For example, both have used the idea of a homotopy
to make a transition from an easy problem to a difficult problem. On
the other hand, the two points of view are contrasted in the behavior of
numerical algorithms, where continuation methods normally work with
probability near one (excluding “bad” cases) while simplicial methods
frequently work without exception.

The book by Wang and Xu presents a self-contained exposition of re-
cent work on simplicial and continuation methods applied to the solution
of algebraic equations. For the case of the search for the roots of a single
polynomial over the complex field, the simplicial algorithm studied is that
proposed by Kuhn. Wang and Xu give a complete and self-contained ex-
position of this algorithm. This is followed by a discussion of error, cost,
and efficiency, areas to which Wang and Xu have made original and inter-
esting contributions. For the same problem approached by continuation
methods, the starting point is Smale’s recent study of a global Newton
method.

Their exposition of Smale’s work is notable for its clarity; in addition,
they have corrected numerous errors in the only published version available
and have filled several gaps in the arguments. This discussion is followed
by original research that compares the cost estimates for Kuhn'’s algorithm
and Smale’s estimates for Newton’s method.

The second half of the book deals with very recent research on systems
of algebraic equations. It is notable for its exposition of the various tools



iv Preface
from widely different mathematical subjects (such as algebraic, geometry
and differential topology) that have been applied to this problem. As
in the first part of the book, both continuation and simplicial methods
are discussed. The final chapter contains contributions the authors have
made to the design of a simplicial homotopy algorithm for the numerical
solution of systems of nonlinear algebraic equations.

It is a pleasure to introduce this book to the reader and student. It
is certain that, by their careful exposition of this active area of research,
Wang and Xu will generate interest and make further progress on these
problems possible.

H.W. Kuhn
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Chapter 1

Kuhn’s Algorithm for Algebraic Equations

This chapter is devoted to Kuhn’s algorithm for algebraic equations and
to the proof of its convergence.

The main references are [Kuhn, 1974; 1977].

Contrary to all traditional methods of iteration, Kuhn’s algorithm is
based on simplicial triangulation of the underlying space, an integer la-
belling, and a complementary pivoting procedure of computation. If its
description is not so simple as, say, Newton method, after certain imple-
mentation, its use is, however, tremendously easy. To solve any algebraic
equation by using Kuhn’s algorithm, the only thing one should do is to
input the complete set of its coefficients as well as the accuracy demand
into the machine. Then the algorithm will find one by one all solutions
with no more care needed. For Kuhn’s algorithm, there are no difficult
problems like the selection of initial values. It is a method with a very
strong guarantee of global convergence.

Finally, for the purpose of only implementing the algorithm, it is
enough to know the first two sections.

§1. Triangulation and Labelling

Let f(z) be a monic polynomial of degree n in the complex variable z with
complex numbers as its coefficients, that is, f(z) = 2" +a12" ' +-- - +apn,
where n is a positive integer and ay,---,a, are complex constants. If a
complex number ¢ satisfies f(£) = 0, £ is called a zero of the polynomial
f or a solution of the algebraic equation f(z) = 0. Kuhn’s algorithm is
designed to find all zeros of f.
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Denote by C the plane of complex z = z + 1y and by C’ the plane
of complex w = u + iv. Then w = f(z) defines a polynomial mapping
f:C-cC.

To describe Kuhn'’s algorithm in the next section, we now introduce a

triangulation of the half-space C x [—1, +00) and a labelling rule for the
vertices of the triangulation.

Let Cg denote the replica C x {d} of the plane C for d = -1,0,1,2,---.
Then C4 C C X [—1,+00). Given a center 3 and a grid size h, we define
the triangulation T of C x [~1, 00) as follows.

Triangulation T;(Z; h) or Ty of the plane C,.

The triangulation T_;(Z; k) of C_ is illustrated in Fig. 1.1. A triangle
in T_1(Z; h) is uniquely determined by a pair of integers (r,s) with r + s
even and (a,b) € {(1,0),(0,1),(—1,0),(0,—1)}. The 2-coordinates of its
vertices are:

Z+(r+1is)h;
Z+((r+a)+i(s+b)h
Z+((r—b)+i(s+a))h.

The supremum of the diameters of its triangles is called the mesh of the
triangulation T_;(Z; h). The mesh of the triangulation T_;(3;h) is obvi-
ously v/2h.

¥ y
} h } he2-4
- L 3z
y = y
| 1
0 X % 0 = x
Figure 1.1 Figure 1.2

The triangulation T4(2; k) of Cg is illustrated in Fig. 1.2, where d =
0,1,2,---. A triangle in T4(2;h), where d > 0, is uniquely specified by
an (a,b) € {(1,0),(0,1),(—1,0),(0,—1)} and a pair of integers (r, s) with
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r + s odd. The z-coordinates of its vertices are
Z+ (r+is)h27%
Z4((r+a)+1i(s+b))h27
Z4((r—b)+i(s+a))h27%
With a similar definition, the mesh of Ty4(Z;d) is v/2h2~¢.

Notice that every triangle in the triangulation Ty4(Z;h) is an isosceles
right triangle with two right-angle sides paralleling to the z-axis and to
the y-axis, respectively.

Remark 1.1 The triangulation T4(Z; h) can be easily portrayed by
four families of parallel lines. But the advantage of the above description
is that every vertex in the triangulation is specified by two pairs of integers
r,s and a,b.

Triangulation T(Z;h) or T of the half-plane C x [—1,00).

By definition of the triangulation Ty4(2; h), for every square in C_; con-
sisting of exactly two triangles in T_;(Z; h) with a common hypotenuse,
there is a unique “above-opposite” square in Cy made of precisely two tri-
angles in To(Z;h) with a common hypotenuse, and the two hypotenuses
are orthogonal each other. The cube between C_; and Cy determined by
two squares is subdivided into five tetrahedra with the manner shown in
Fig. 1.3. All such cubes are treated in the same way.

Similarly, for d > 0, every square in C; made of exactly two triangles in
T4 and its four above-opposite squares in Cgy1 determine an elementary
guadrangular prism between C; and Cg41, the prism is subdivided into
fourteen tetrahedra as in Fig. 1.4

C, Cain

Figure 1.3 Figure 1.4
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In this way we obtain the simplicial triangulation T(Z; h) of the half-
space C x [—1,00), shortly denoted by T. Notice that no new vertices
have been added to define the triangulation, that is, all vertices of the
triangulation T(Z; h) are the vertices of the triangulation T4(Z; h) for d =
—1,0,1,2,---. We denote the vertex set of T(; k) by V(T(%;h)) or V(T).

In the algorithm to be presented in the next section, we shall be
concerned very often with triples of points {(z1,d,), (22,d2), (23,d3)} (or
shortly {z1,22,23}) which are the vertices of a triangular face of some
tetrahedron in the triangulation. The name “triple” used in next several
sections has always this meaning.

For the triangulation, the following lemma is obvious.

Lemma 1.2  Suppose that {(z1,d1), (22, ds), (23,d3)} is a triple in T.
Let d = min{d;,dy,d3}. Thend < dy <d+ 1 for k = 1,2,3. q

In the case of Lemma 1.2, we say that the triple {z1, 2, z3} lies between
levels C4 and C4y;. In particular, when d; = dy = d3, we say that the
triple {21, 22, 23} lies in Cy.

Let {(z1,d1), (22,d3), (23,d3)} be a triple in T. Define the diameter of
the triple by

diam{(21,d1), (22, d2), (23,d3)} = max{|21 — 23], |22 — 23|, |25 — 21|}
One may instead denote it shortly by diam{zy, 2o, z3}. Notice that it is,
in fact, a projective diameter.

Lemma 1.3 Suppose that the triple {z1, 22, 23} lies between levels C
and Cgy 1. Then
diam{zl, 22, Z3} < \/Eh2_d.

Proof. This inequality is obvious since the diameter of all possible
triples lying between levels C4 and Cgyy; is easily found from Figs. 1.3
and 1.4. §

This lemma shows the fact that the higher the level Cy is, the smaller
is the diameter of the triple in C, or above C,.

Now, we turn to present the labelling rule for the vertices of the tri-
angulation T(Z; h).

Given any nonzero complex number w = u + i v, define argw to be the
unique real number « satisfying

—rT<a<lm,
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u
VuZ + 02’
v

VuZ 402

Definition 1.4 Define an assignment [ : C — {1,2,3} by

CoOsx =

and
sina =

1, if —n/3 <argf(z) <w/3or f(z)=0;
l(z2)=¢ 2, if =/3 <argf(z)<m;
3, if —m <argf(z)<-—-n/3.

l is called the labelling of the z-plane C induced by the polynomial f, and
l(z2) is called the label of z. See Fig. 1.5 for an illustration.

v /
¥ I /
/—\ /
& _ /
z f@)|y I
0 x T \\ x
N\
I \
N\
\
z =x +1iy Plane w =u +iv Plane
Figure 1.5

Definition 1.5 Let f_1(z) = (z — 2)*, and f4(2) = f(z) for d =
0,1,2,---. Define I : V(T(2;h)) — {1,2,3} by

1, if —7n/3 <argfq(z) < w/3or fa(z) =0;
l(2,d) =1} 2, if =/3 <argfe(z)<m;
3, if —m <argfi(z) < —7/3.

l is called the labelling of V(T(z;h)) induced by the polynomial f, and
I(z,d) is called the label of the vertex (z,d).

Notice that we use the same notation ! in Definition 1.4 and in Def-
inition 1.5. No confusions could arise since, for every vertex (z,d) €
V(T(Z;h)), it is clear that its label is either determined by f(z) when
d > 0 or determined by (z — )" when d = —1.

Based on the triangulation and the labelling, we can now introduce
the concept of complete triples.
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Definition 1.6 The triple {21, 22, 23} is completely labelled by f if
{U(21),U(22),1(23)} = {1,2,3}. In this case, we may also simply say that
{z1, 22, 23} is a complete triple.

For simplicity of expressions and of specification, from now on we
assume that I(zx) = k, k = 1,2,3 for any given complete triple {z;, 22, 23}

The definition of complete triples does not point out whether the labels
of its vertices are determined by f(z) or by (z — 2)*. In fact, for some
triple {21, 22, 23}, it is possible that all of its vertices are labelled by f(z)
, or all are labelled by (z — Z)", or partially labelled by f(z) and partially
labelled by (z — z)™.

The following result establishes certain connections between triples
completely labelled by f(z) and the zeros of f(z).

Lemma 1.7 Let {z1,292,23} be a complete triple whose labels are
determined by f(z), and |f(zx) — f(z1)|] < n for k,l = 1,2,3. Then for
k=1,2,3,

21
< —.
|f(2x)| < =

7

Proof. The sectors 1, 2 and 3 of the w-plane illustrated in Fig. 1.6
are the three ranges whose preimages are respectively labelled 1, 2 and 3.
The label of a point z is determined by the sector into which f(z) falls.
According to the convention I(2x) = k for k = 1,2,3, if | f(2x) — f(21)| < n
for k,l = 1,2,3, then f(z;) must lie in Sector 1 and both the distances
between f(z1) and Sectors 2 and 3 are smaller than . Thus f(z;) must
lie in the shadowed area as shown in Fig. 1.6. Hence, |f(21)| < 2n//3.

Similarly, |f(z2)| < 21/v/3 and |f(z3)| < 2n/V3. 1

1
Q\
Figure 1.6

It is well-known that every polynomial function is uniformly continu-
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ous in any bounded domain. If we can find a triple completely labelled
by f with small diameter, then the distances between the images of its
vertices are also small and so are the distances between the images and the
origin of the w-plane (by Lemma 1.7). If the distances are small enough,
then every point of the triple can serve as a numerical zero of f with
certain accuracy. Furthermore, we have learned that the higher the level
C, is, the smaller is the diameter of the triple in C4. These motivate to
design an algorithm to locate complete triples whose projections always lie
in a given bounded domain and the complete triples run through higher
and higher levels. This will be done in the next section.

§2. Complementary Pivoting Algorithm

We first present several useful lemmas.

Let Q,,(Z; h) denote the square in C with corners at zZ + mh(+1 £1),
where m is a positive integer, that is, Q.(Z;h) is a square with center
at z, the lengths of its four sides are all 2mh and each side parallels the
z-axis or the y-axis (Fig. 1.7).

A side of some triangle in the triangulation T is called an edge of the
triangulation. The boundary 8Qm(%; h) of Qm(Z;h) is oriented counter-
clockwise. With the notation {z’, 2"} for an edge on dQm(Z;h), we call
{2, 2"} a positive edge if the direction of the edge from 2’ to 2" coincides
with the direction of 8Qm,(Z;h), otherwise {2/,2"} is called a negative
edge. The triangles of T_1(Z;h) inside Qm(Z; h) are oriented in the cus-
tomary counterclockwise cyclic order of their vertices. With the notation
{2',2",2"} for a triangle in T_1(Z; h), we call {2/,2",2"} a positive tri-
angle (triple) if the ordering of 2/, 2", 2" gives the positive direction of
the triangle, otherwise it is a negative triangle. We may simply denote
Qm(Z;h) and 9Qm(2; h) by Qm and 9Q., respectively.

The angle spanned by z’,z” with respect to z* is defined to be the
unique angle no larger than 7 and spanned by two rays starting from z*
and passing through 2’ and 2" respectively. It is also called the angle
spanned by the line segment 2’2" with respect to 2*.

By saying that an edge is labelled (k,l), we mean that its starting
vertex is labelled k while the ending one is labelled [.

3 ; : ;
Lemma 2.1 Ifm > -22, then in the counterclockwise direction of
7r
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OQm, there are ezactlyn (1, 2)-labelled edges on 8Q,, and no (2,1)-labelled
edges.

Proof. Let {2',2"} be an edge on 8Q,,. Denote by a the angle
spanned by 2’ and z” with respect to 7. Refer to Fig. 1.7, it is evident
that

h
O<a§arctan(——) < i < gﬁ
mh m ~ 3n
Let § be the angle spanned by w' = (2’ — 3)” and w" = (2" — 2)™ with

respect to the origin of the w-plane. Then

n 2m
0<fB=na<—<—,
m 3
aj V
L — hy
r_
Zz mh
Figure 1.7

From the structure of Q,, and the properties of the function w =
(z—2)", the image of 8Q, runs around the origin of the w-plane n times.
Since 0 < B < 2m/3, the angle spanned by the images of some edge on
0Q. with respect to the origin is smaller than 27 /3. Hence, starting from
w = (mh)™ in the w-plane, the image of 8Q,, runs exactly n times from
the sector 1 into the sector 2. Thus, in the z-plane, there are exactly n
(1,2)-labelled edges on 8Q,y,.

Similarly, if {(z) = 2 then we have I(z”) = 2 or 3 and never I(z") = 1
due to 0 < 8 < 2m/3. Hence there is no (2,1)-labelled edges on 8Q,,. q

Now, starting from z = Z 4+ mh € 8Q,, and following 8Q,, in its pos-
itive direction, we number the n (1,2)-labelled edges from 1 to n. This
order of the (1,2)-labelled edges will be frequently used in the next sec-
tions.

3(1+v2)n

Lemma 2.2 Ifm > ————"— then outside Q,, there is no com-
T

plete triples labelled by (z — z)™.



§2. Complementary Pivoting Algorithm 9

Proof. ~ We first prove that if 2’2" is an edge on 9Q,, or outside

2m
Qm then the angle spanned by 2’2" with respect to Z is smaller than "

n
In fact, if 2’2" parallels the z-axis or the y-axis then the result follows

directly from Lemma 2.1. Now, let 2’2" be the hypotenuse of a triangle
in T_; outside Q,,. Due to the structure of @,,, the angle reaches its
maximum only when the edge 2’2" intersecting with 8Q,,. Without loss
of generality, let k be a positive integer such that 2/ = 2 + h(m + 1 + i k)
and 2" = Z+ h(m + i (k + 1)). Referring to Fig. 1.8, we have

a = arctan — arctan

m+1’

m+k+1
m2+m+k2+k

tana =

Z'=z+hm+k+ 1))

BN

2"'=z+h (m+1+k))

|

Figure 1.8
Hence, as a function of k, at k = /2m(m + 1) — m — 1, tana takes its

maximum

m+k+1

:
m2+m+k2+k  2y2m(m+1)-2m—1
1

2m(v/2 — 1)
1+v2

2m

Of course, the above inequality is true for any integer k. Notice also that
a < /2, we obtain

1+\/§<375
—~ 3n’

a< tana <
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Now let {z',2",2"'} be a triple in T_;(%;h) outside Q,,. Then the
angle spanned by each edge of the triple with respect to 7 is less than 2—7r
" ' S\ (M “\n mo__ (_m “\n "

et w' = (2 — 2)",w’' = (2" — )" and w" = (2" — z)". Then the angle
spanned by a pair of w’, w”, w"”" with respect to the origin of the w-plane

is less than 27/3. Combining with the following Lemma (2.3), {2, 2", 2" }
is not a triple completely labelled by (z — 2)". q

Lemma 2.3 Let {2',2",2"} be a triple in the z-plane, and let w', w",
w" denote respectively the images of 2, 2", 2" under mapping w = (z—Zz)"
or w = f(z). If none of w',w",w" is zero and the angle spanned by any
pair of w',w",w" with respect to the origin of the w-plane is less than
2m/3, then the triple {2, 2", 2"} is not complete.

Proof.  Suppose otherwise that {z’, 2", 2"} is complete and
I(z") =1, U(2")=2, and I(z") = 3.

In the w-plane, let «, 3, denote respectively the less-than-27 angle from
0w to 0w’ from 0w’ to Ow”, and from Ow” to Ow".(cf. Fig. 1.9) Then
a>0,>0,vy>0and a+ B+ =2m.

Figure 1.9

Now , if @ > 7 then the angle spanned by w"’w’ with respect to the
origin is 2m — a. By the assumption of this lemma, 27 — a < 27/3,
thus a > 47 /3. But according to the labelling, a < 4n/3. This is a
contradiction. Similarly, 3 > 7 or v > 7 will also lead to contradictions.
Finally, if none of «, 3,7 is larger than w, then a,f3,~ are exactly the
angles spanned respectively by the three pairs of w’,w” and w"” with
respect to the origin, and thus are all smaller than 27/3. This contradicts



