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Preface

The idea of positive definiteness is playing an increasingly important role in
complex, real, stochastic and abstract analysis. In the complex domain the
idea began to fructify with the work of S. Bergman in the 1920s, and in the
real domain it appeared with the Herglotz and Bochner theorems on Fourier-
Stieltjes transforms. With the advent of the kernel theorems of Kolmorogov,
Aronszajn and Pedrick in the 1940s and 1950s, the notion has been Tinked to the
study of the geometry and kinematics of Hilbertian varieties. In the present
monograph we bring the last viewpoint to bear on the first, our point of de-
parture being Rovnyak's 1963 extension of Pick's 1916 theorem to Hilbert space-
valued functions. Our work may be Tooked upon as a far-reaching ramification
of Rovnyak's dissertation [26] and of the cognate work of Nagy and Foias [22,23].

A preliminary outline of our ideas was presented at the Second Conference on
Probability Theory on Vector Spaces in Btazejewko, Poland, in 1979 (see [10]).
The first author thanks the Swedish Royal Academy of Sciences for a Visiting
Scholar award in 1981-82 at the Mittag Leffler Institute, Djursholm, Sweden,
during which time a part of this research was completed. The second author
sincerely thanks the Alexander von Humboldt Foundation for a Senior Visiting
Scientist award in 1979-80, during which period a part of this research was
carried out. It was in Germany that he had the benefit of conversations with
Professor Rovnyak. Both of us would 1ike to thank Professor Rovnyak as well
as our Pittsburgh colleague Professor F. Beatrous for such conversations.

We are grateful to Professor F.F. Bonsall for suggesting the Pitman series
as a venue for publication and for forwarding our manuscript to them, and we
are indebted to Dr M. Dixon of Pitman Books for looking after the many details
of the actual publication. Last but not least our sincere thanks go to Mrs
D. Luppino-Grant for her excellent typing of an extremely complicated hand-
written manuscript. For the final typing as it appears in the monograph we
are much obliged to Ms Terri Moss.

J. Burbea
University of Pittsburgh P. Masani
Pittsburgh, PA 15260
April, 1983
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Part I
General theory






1 Introduction

Let k(-,+) be a complex-valued positive-definite (PD) kernel on the Carterian
13 w2 be
complex Hilbert spaces and let Y(+) be a non-constant function on D the values

product DxD of the open unit disk D in the complex p]aneJr C, let W

of which are continuous linear operators on w1 to wz. Under what conditions
on k(+,+) and Y(+) will the Nz-to—w2 lTinear operator-valued kernel LO(-,-),
defined by

{\]‘1) Lo(Z’C) = k(z’g){lwz - Y(C)Y(Z)*}a Z, ¢ € Ds

where Iw is the identity operator on w2 and Y(z)”* is the adjoint of Y(z), be
2
PD on DxD?

Now Lo(z,g) = k(z,z)-a(z,z), where A(z,z) 3 Iw - Y(z)Y(2)*. But to answer
2

the question we cannot fall back on the simple result that the product of PD
kernels is PD, for the kernel A(-»+) is not PD on DxD for non-constant Y(-).
The question is in fact non-trivial. With w1 = N2 = C and with k(-,+) equal
to the Szegd kernel

(1.2)  k(z,z) : 1/(1 - z¢), z, z €D,

it goes back to Pick [25] in 1915. Pick showed that in this case LO(-,-) is
PD when Y(-) is a holomorphic function on D into D, and conversely, if LO(-,-)
is PD, then Y(-:) either must be as just described or must be the function with
the constant-value 1. He thus gave a complete answer to our question for non-
constant Y(-), to wit, LO(-,.) is PD if and only if Y(-) is holomorphic on D
to D.

+  Throughout this monograph € is the complex number field, R the real number
field, and F refers to any one of these. Z is the set of integers. R ,
N, and Ry, Ny, denote the subsets of positive elements and the subsets of

non-negative elements of R and N, respectively.



The consideration of the question above for complex Hilbert spaces W
and the Szeg8 kernel (1.2) began, it would seem, with the efforts of J.

W
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Rovnyak [26] in 1963 to extend the Pick theory to vector-valued functions.
In the spirit of Pick, he proved that the kernel LO(-,-) is PD when Y(-) is
a contractive (operator-valued) holomorphic function on D, i.e. is such that

the Taylor coefficients Ak now being continuous linear operators on w1 to NZ'
Rovnyak also proved that these very conditions ensure the positive-definite-
ness of the related dual w1—to—wI linear operator-valued kernel MO(-,-)

defined by

(1.3)  My(z,0) = m){1w1 - ¥(2)"V(2)}, 2,5 € D.
(In the case W1 = w2 = T, MO(-,-) simply becomes the complex-conjugate of
LO(-,-), thereby losing interest and escaping notice.)

The proofs of these theorems for LO(-,-) and MO(-,-) with the Szeg8 kernel
(1.2) given by Rovnyak [26] and subsequently by Nagy [22] and by Nagy and
Foias [23: pp. 231-233] lean heavily on the analytic implications of these
kernels and exploit the theory of the Hardy class H2 on the disk D. Our
point of departure came from reflection of an aspect of the Nagy-Foias proof:
the appearance of the Hardy spaces HZ(D,W1), H2(D,w2) of w1- and wz-vector—
valued functions on D and of the multiplication operator MY from the first of
these spaces to the second that Y(-) induces. This suggested to us the feas-
ibility of an abstract generalization, from which analyticity would disappear,
but which when applied to analytic contexts would not only subsume the Rovnyak
results but considerably enlarge their scope with regard to both the choice
of the domain D and of the scalar-valued kernel k(-,-). A convenient way to
see this is to pose the following question:

1.4 Question. Let A be any non-void set, K1(-,-), K2(-,-) be PD kernels on
A x A to CL(W1,W1) and CL(NZ’NZ)’ respectively, and let Y(*) be a function
on M to CL(N1,W2). Under what conditions will the Wz-to-wz operator-valued

+ CL(X,Y) stands for the space of continuous linear operators on the Banach
space X to the Banach space V. IX is the identity operator on X.



kernel L(+,-) defined by
*
LOGLA') = K000 = YK, OLANY(A) 5 A" €A,

be PD on A x A to CL(wz,wz)?

To see the relevance of this question to the problem under discussion and
to discern the sort of answer that may be expected, two observations are in
order:

(i) On letting pn = D and Kj(z,;) = k(z,2)Iy., J = 1,2, the kernel L(+,*)
J

reduces to the LO(-,-) of (1.1), and Question 1.4 reduces to our initial
question. Thus an answer to Question 1.4 would automatically answer the
initial question.

(ii) From the fundamental work of Kolmogorov, Aronszajn and Pedrick [18,
2, 247, it follows that given a Hilbert space W and a W-to-W operator-valued
comprising

PD kernel K(-.,-) on A x A, there exists a Hilbert space F = F
) € A, On F

LW
functions on A to W for which the evaluation operators, EF(A 5 A
to W, defined by

EL((f) = f(A), feF,ren
are continuous and satisfy the equalities
*
E(M')-Ex(0) = KOLA'),  asa' € A

Further inquiry reveals that when A = D and K(+»-) = k(-,-)Iw, where k(-,*)
is the Szegd kernel (1.2), we have F = H2(D,w), which for W = w1 and W = w2
are the very spaces appearing in the Nagy-Foias proof. It is therefore

reasonable to expect that the answer to Question 1.4 will also involve the
to F

multiplication operator MY induced by Y(+) on F these being

A,N1 A,wz’
the function Hilbert spaces corresponding to the kernels K1(-,-), KZ(-,-),
respectively.

We see from this discussion that Question 1.4 captures in the abstract
the essential core of our initial question. With this clarification, we can
conveniently turn to outlining the main new results obtained in this mono-
graph.

(1) We settle Question 1.4 by proving that the kernel L(-,-) in it is PD
on A x A to CL(WZ’WZ) when the multiplication operator MY is a contraction on

5



F 3
A,N1 A,w2

K1(-,-), Kz(-,-) in Question 1.4, cf, Corollary 3.5.

to F these being the function Hilbert spaces for the kernels

(2) With the notation of Question 1.4, let J1, J2 be conjugations on the
Hilbert spaces w1, NZ’ let

?(') a J1Y(') st E'('9') = J.K.(',')J‘s j 192:

d o J
and define the w1-to—w1 operator-valued kernel M(-,) by

A

MOLA) = K OuaT) = YO RyOuADY), ' € .

Then we show that M(.,.) is PD on A x A to CL(N1,W1), provided that the

multiplication operator M? is a contraction on F to FA W these spaces

AsWy 1

being as in (1), cf. Corollary 4.7.

(3) With the notation of Question 1.4, let * be an involution on A, and
let

n V]
Y(A) = Y(A*)*, Kj(x,x') K (A%50 %) s Ash' € As J = 1525

d
and define the W,-to-W, operator valued kernel N(-,+) by

"

NOLAY) = K Guat) = YOO* K (ua)Y(), A’ € A

d
Then we show that N(<,-) is PD on A x A to CL(W w1), provided that the

1’
multiplication operator M? is a contraction on F to F these again

A’wz A9w1,

being as in (1), cf. Corollary 5.5.
(4) Applying the result in (1) to the case in which A is an open set
pctd, geN,, and Ki(ese) = k(52D 5 § = 1,2, where k(+,+) is a weighted

J
Bergman kernel for @, we deduce that the kernel LO(-,-) defined by

Lo(ZsC) = k(zsg){lw = Y(C)Y(Z)*}9 Z;C € 0
2

is PD on Q x Q to CL(WZ,WZ), provided that Y(*) is a holomorphic function on
Q to CL(W,,W,) and |Y(z)| <1 for z € @, cf. Theorem 10.9. This extends the
Rovnyak result for LO(-,-) with the Szegd kernel (1.2) for the disk D to the
Bergman kernel for an arbitrary open set @ in the space of several complex

6



variables.

(5) Again applying the result in (1) with A a bounded open set Q < ¢
with a sufficiently smooth boundary 9%, and Kj("') = k(-,-)Iw s I =142
1

where now k(-,+) is the Szegy kernel for @, we deduce that the kernel L0(°,-)
defined by the formula in (4) is PD on Q x Q to CL(WZ’WZ)’ provided that

Y(+) is again a holomorphic function on @ to CL(N1,w2) and |Y(z)| < 1 for

z € Q, cf. Theorem 11.14. This extends the Rovnyak result for L0(°,‘) with
the Szegd kernel (1.2) for the disk D to the Szegl kernel for any smooth
domain @ in €Y.

(6) Applying the results in (2) and (3) with A an open set Q < t9, q ¢ N,

and Kj(-,-) = k(-,-)Iw , J =1,2, where k(+,+) is the Bergman kernel for Q,
1
we deduce that if Y(:) is holomorphic on Q to CL(W w2) and |Y(z)] £ 1 for

19
z € 9, then the kernel MO(-,-) defined by

Mo(z,c) = k(z,g){L,, - Y(g)*Y(z2)}, z,z€eQ

Wy
is PD on 2 x Q to CL(W1,W1), and in case Q = & Z {Z:z ¢ Q}, so too is the
kernel NO(',°) defined by

No(z,2) = k(Z,2){1, - Y(2)*Y(2)}, z,2€Q

1
cf. Theorem 10.9. These results extend the Rovnyak result for MO(-,-) in
(1.3) with the Szegd kernel (1.2) for D to the Bergman kernel for arbitrary
open sets @ < €%, even when 2 # Q.

(7) Applying the results in (2) and (3) with A a smoothly bordered bounded
open set @ in t9 and Kj(-,-) = k(-")Iw', j = 1,2, where now k(+,*) is the
Szegd kernel for 2, we deduce the precige analogues of the results in (6),
cf. 11.14. 1In case @ = D, these reduce to Rovnyak's result for MO(-,-) in
(1.3) with the Szeg8 kernel (1.2).

Thus from the abstract and general theorems mentioned in (1), (2), (3) we
are able to get the analytical results in (4), (5), (6), (7), which are sub-
stantial extensions of the Pick-Rovnyak results for the disk. And since the
category of complex-valued kernels k(:,+) on @ x Q@ , where © is an open set
in Cq, to which the results in (1)-(4) are applicable contain several which



are neither ordinary Bergman nor Szegb,+ the scope of our abstract approach
extends well beyond the results in (4)-(7).

In the course of proving the results in (1)-(7), we have had to cover some
hitherto unexplored ancillary ground. Among the new concepts and results
emerging from our investigations in this ancillary realm, the following may
be cited.

(8) The kernel theorem emerging from the work of Kolmogorov, Aronszajn
and Pedrick to which we alluded in (ii) above and which is crucial to our
abstract treatment, has not been formally enunciated in the Titerature.
Kolmogorov and Aronszajn dealt with scalar-valued kernels exclusively, and
Pedrick's important extension to kernels whose values are operators from W*
to W, where W is a locally convex topological vector space and W* is its
adjoint, is available only in the unpublished report [25]. A version of the
kernel theorem for W-to-W*-valued PD kernels, where W is a Banach space, has
been established by one of us and put to considerable use in the propagator
theory of Hilbertian varieties [21: Thm. 2.10]. In this, however, the auxi-
liary Hilbert space F comprises scalar-valued functions on A x W, and not
W-valued functions on A as required in (ii) above, cf. [21: App. C]. Indeed
the very concepts of W-vector-valued function Hilbert space, where W is a
Hilbert space, and of its 'reproducing' kernmel do not seem to appear in the
printed literature. In this monograph we demarcate these concepts after
introducing first the more basic concept of a W-vector-valued function Banach
space (Chapter 2), and establish the Kernel Theorem 2.12, by deducing it from
the lemmas employed in the paper [21].

(9) The answer to Question 1.4 cited in (1), though it suffices for the
analytic applications (4), (5), is not the best possible. In our Main
Theorem 3.4, we give a better answer which allows the multiplication operator

MY to be defined merely on a proper subset of FA W, not necessarily every-
>

where dense in FA W but places a restraint on the domain of MY-(MY)*. For

o

this we first show that MY is always closed, and then appeal to our general

lemma that if T is any closed operator from a Hilbert space H1 to a Hilbert

+ For instance, the kernel k(.,-) defined by k(z,z) =1/(1—Zg)r, z,c €D,
where r € [1,=).



space HZ’ then (although T* can be many-valued) TT* is single-valued and self-
adjoint from H2 to H2, cf. Appendix A.2. This last is a slight improvement
of the classical von Neumann result for closed, densely-defined operators

from H, to H2.

1

(10) 'Inflated' function Hilbert spaces, FA,W i.e. ones for which the
kernel K(-,+) has the simple structure k(-,-)Iw, where k(+,*) is a scalar-
valued kernel, are conspicuous in all our analytical applications (4)-(7).
But the elegant properties of such spaces are not recorded in the literature.
We do so in this monograph (Chapter 7) and show that such a space FA,w is
isometrically isomorphic to the tensor product W ® FA,E’ i.e. to the Hilbert
space of Hilbert-Schmidt operators on W to FA,Q’ the Tast being the function
Hilbert space with the scalar-valued kernel k(-,-), Theorem 7.8.

(11) The question whether function Hilbert spaces F1 = FA,w > F2 = FA,w .

1 2
with the same A, are 'norm-related', i.e., whether the implication

fo€F, f, €F

1 o ) , and lf1(')|w1 < |f2(-)|w2 on A

- |f1|F < |f2|F

1 2

prevails, loomed large in the initial phases of our research. Although, as
we soon realized, this question can be bypassed, it has an interest of its
own. It would be interesting, for instance, to characterize the C-valued
kernels k(+,+) on A x A for which the function Hilbert space FA,E is norm-
related to itself. We broach some of these questions in Chapter 8.

The Bergman spaces B _(2,C), (p 2 1) of C-valued functions on an open set
Qc mq, the Hardy spaces H (2,C), where © is a polydisk or some variant
thereof, and the Hardy space H2(D,w) of functions on the disk D in C to a
Hilbert space W appear extensively in the literature, but, so far the vector-
valued function spaces Bp(Q,w), Hp(Q,w), for Banach spaces W and-p 2 1, have
not been defined in their full generality, nor of course studied. Indeed the
underlying concept of a W-valued holomorphic function on an arbitrary set

Qe t9 has been systematically studied only in the cases q = 1,°°.+ In this

t cf. Hille-Phillips [15]; they study the replacement of c4 by a Banach
space and the problems so created.



monograph we have filled in these omissions in the interests of securing a
coherent treatment free of ambiguity (Chapter 9). From among the results we
obtain in this area the following bear mention.

(12) We state and prove a general 'Hartogs Theorem' for functions on an
open set Q@ < t9 with values in a Banach space W, cf. Theorem 9.4, and study
it more specifically for W equal to the space CL(W1,w2) of continuous linear
operators on a Banach space w1 to a Banach space w2.

(13) For an open set Q = t? and a Hilbert space W we obtain the necessary
and sufficient conditions that a PD kernel K(+,+) on Q x Q to CL(W,W) must
fulfil in order that the associated function Hilbert space FA,W comprise

hoTomorphic functions on @ to W exclusively, cf. Theorem 9.17.

(14) For a large class of reasonable non-negative measures u on the
family of Borel subsets of an open set @ < Eq, for all Banach spaces W and
for all p > 0, we define the W-ranged p,u Bergman space Bp, (2,W) and show
that for p 2 1 it is a Q,W function Banach space, and that for a Hilbert
space W, BZ’U(Q,W) is an inflated function Hilbert space (Theorems 10.4, 10.5).
Likewise we define the W-ranged p Hardy space H_(Q,W) for a large class of
smoothly bordered domains Q in Eq, and show that for p > 1 it is a Q,W Banach
function space, and that for a Hilbert space W, HZ(Q,W) is an inflated
function Hilbert space (11.7, 11.9, 11.10).

Some cognate work by one of us on the operator extensions of converse
Pick results for Bergman and Hardy spaces, and for Hardy spaces over domains
Q in €, which are not smooth, but for which 'generalized Szegl' kernels are
definable by means of Ahlfors functions, will appear elsewhere [6, 7, 8].

We end this introduction by briefly describing the organization of this
monograph. Chapter 2 is devoted to the basics of A,W function Hilbert spaces
FA,N’ and to proving the Kernel Theorem 2.11. In Chapter 3 we bring in the

A,w1 to FA,NZ that a function Y(+) on A

to CL(W1,w2) induces,and prove our main theorem and Corollary (3.4, 3.5).

multiplication operator MY(-) from F

Chapters 4 and 5 are concerned with the dualities emerging from the presence
of conjugations on the Hilbert spaces w1, w2 and from possible involutions on
the set A itself. In Chapter 6 we recapitulate the simplifications which
accrue when W =F (i.e. W =R or C), primarily in order to deal in Chapter 7
with inflated function Hilbert spaces. In Chapter 8 we broach the question
of norm-related function Hilbert spaces. This exhausts our treatment of the

10



abstract theory, and ends Part I of the monograph.

In Part II we turn to the analytic applications of the abstract theory.
In Chapter 9 we study the concept of W-valued holomorphic functions on €,
where W is a Banach space over €, and Q is an open set in Eq, qg=21. 1In
Chapters 10 and 11 we turn to the Bergman and Hardy spaces Bp,u(Q’w) and
Hp(Q,w), paying special attention to the case p = 2 and W is a Hilbert space.
Finally, in the Appendix we cover the operator-theoretical material that is
required in the monograph, but is omitted from the main text in order to
avoid digression.



2 Hilbert spaces of functions with values in
a Hilbert space

To define Banach and Hilbert spaces of vector-valued functions we need a
notation for evaluation operators:

2.1 Notation For non-void sets A,W, we let

WA Z {f: f is a function on A to W}

and

VA € A and Vf € wA, Ex(f) <=1 f(A) € W.

We call EA the evaluation operator at M.

2.2 Definition Let A be a non-void set and W be a Banach space over F. We
say that F is a AW function Banach (or Hilbert) space, iff (i) F < WA,
(ii) F is a Banach space (or Hilbert) space over F, (1'1'1')jL YA € A, EF(X)
Rstr. E, € CL(F,W). A fuller notation for F is Fp y-.

FoA
Examples. Function Banach spaces are easy to exhibit. Thus, the Banach

Qo

space F = C(A,W) of continuous functions on a compact Hausdorff space A to a
Banach space W under the sup-norm is a A,W function Banach space, since
obviously F c WA and

vf e Fandva €, [E(F)], = [F(A)], < sup [f(X')]

X'EN .

Likewise the space F = QZ(A,W) of functions f on an arbitrary set A to a
Banach space W for which

/T OIFOG < w

|f]
2d " en

is obviously a A,W function Banach space. In case W is a Hilbert space, this
F becomes a A,W Hilbert space, under the inner-product
= 2 (f(\), g(A)),, fog € F.
(F.9) = &, (F(A), 90y Fag
Rstr.SF means the restriction of the function F to the set S.

12



