" Advanced Graphics
‘ - with the

Sinclair X Spectrum

(AT V]
AR R
w0owm |-
NTRIN

si;:i’

.O. Angell and B.J. Jones



Advanced Graphics with the
Sinclair ZX Spectrum

Ian O. Angell and Brian J. Jones

Department of Statistics and Computer Science,
Royal Holloway College,
University of London,
Egham, Surrey

M

MACMILLAN PRESS
LONDON



© Ian O. Angell and Brian J. Jones 1983

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

First published 1983
Reprinted (with corrections) 1983

Published by

THE MACMILLAN PRESS LTD
London and Basingstoke
Companies and representatives
throughout the world

Printed in Great Britain at
The Camelot Press Ltd,
Southampton

ISBN 0 333 35050 2 (book)
35051 0 (cassette)



Preface

With the rapid advance of computer technology has come a substantial reduction
in the price of computer hardware. In the coming years the price of peripheral
devices will also tumble. This means that users with a limited budget, who
previously had access only to the most elementary computing devices, will soon
be able to afford the most sophisticated computers. They will also be able to
escape from the limitation of tabular numerical output and buy microprocessor
attachments for television monitors or inexpensive special-purpose colour
graphics devices. Sinclair computers have always led the field in this respect.
Software, however, does not appear to be getting cheaper.

Because of the enormous capital expenditure required to set up graphical
output in the past, both in machines and software, the subject of computer
graphics has been the preserve of large research groups. This inaccessibility has
led to a mystique growing up around the subject and it has achieved a false
reputation for difficulty. This book is an attempt to lay the ghost of com-
plexity; it will also show that complicated (and hence expensive) software
packages, which are naturally of great value in research organisations, need not
frighten away the average computer user. For most purposes these packages are
unnecessary. This book, as well as being an introduction to computer graphics,
may be considered a (very inexpensive) software package: it is a lot cheaper
than commercially available packages! Naturally, because of this fundamental
approach, users have to achieve a reasonable understanding of their graphics
device before pictures, other than those provided, may be drawn. This need
not be a disadvantage; the amount of groundwork required will be seen to be
very limited. As a direct result, the knowledge of the user grows along with the
package and he is far less likely to misinterpret any of the graphical routines.
References are given and relevant further reading material is recommended in
order to expand the reader’s horizons in the subject.

It is assumed that the reader has an elementary knowledge of Cartesian
coordinate geometry (the authors recommend the books detailed in Cohn
(1961), Coxeter (1974), and McCrae (1953) — see References), and also of the
BASIC programming language (see the Spectrum BASIC Handbook (Vickers
(1982) and Hurley (1982)). Many interesting programming exercises are proposed,
and these should raise the standard of the reader’s BASIC expertise. BASIC is a
universally popular language, available (in various guises) on all types of micro-
computer, so the programs may be easily adjusted to run on machines other



X Preface

than the Spectrum: it is also a good medium for transmitting the algorithms
used in computer graphics, enabling readers to translate these ideas readily
into any other computer language of their choice.

The concepts necessary for the study of computer graphics are organised as
a combination of theory and worked examples; these are introduced as and
when needed in the natural progression of the subject. Some program listings
form part of the examples and these should not be considered just as algorithms
that describe solutions to fundamental graphical problems, but also asa computer
graphics software package in BASIC, or simply as programs to draw patterns.
Alongside the examples are a series of exercises that expand these ideas. The
practical problems implicit in programming the various concepts of computer
graphics are often more a source of difficulty to the student than the concepts
themselves. Therefore it is essential that readers implement many of the program
listings given in the book in order to understand the algorithms, as well as
attempt a large number of exercises. As an extra learning aid, a companion audio-
cassette tape is being made available; this contains most of the larger program
listings given in this book. If readers are nervous of the mathematics, they should
run the programs first before studying the theory.

This approach to the subject has been used with great success in teaching
computer graphics to undergraduates and postgraduates at Royal Holloway
College. Quickly producing apparently complex pictures results in the positive
feedback of enthusiastic interest. The ability to construct pictures on line-
drawing and colour interactive graphics screens makes a long-lasting impression
on students; and the step-by-step approach brings them very quickly to the
level of very sophisticated computer graphics. That level is outside the scope
of this book, but where necessary readers will find relevant references to guide
them into the more advanced topics.

This book is aimed at those who are competent BASIC programmers but
complete beginners in graphics. It contains the elementary ideas and basic infor-
mation about pixel and two-dimensional graphics, which must be mastered
before attempting the more involved ideas of character and three-dimensional
graphics. This is followed by a section relating to character graphics and the
display of data (in line drawings and colour) - probably the most important
non-specialised, commercial use of computer graphics. Later chapters introduce
the reader to the geometry of three-dimensional space, and to a variety of
projections of this space on to the two-dimensional space of graphics devices.
The related problems of hidden lines and hidden surfaces, as well as the con-
struction of complex three-dimensional objects, are dealt with in detail. Finally,
we return to advanced ideas in BASIC programming and a large worked example
of a video game.

Graphics is one of the most rapidly expanding areas of computer science. It
is being used more and more in the fields of Computer Aided Design (CAD),
Computer Assisted Management (CAM) and Computer Assisted Learning (CAL).
At one time it was only the big corporations such as aircraft and automobile



Preface xi

manufacturers that used these techniques, but now most companies are realising
the potential and financial savings of these ideas. What is more, not only is
computer graphics profitable, it’s fun! The Sinclair Spectrum is an ideal machine
on which to learn the basics of computer graphics, and an excellent springboard
to the most sophisticated (and expensive) graphics devices.

We hope this book will display some of the excitement and enthusiasm for
computer graphics experienced by us, our colleagues and students. To demon-
strate just how useful computer drawings are for illustrating books and pam-

M{\phlets, all the pictures here were drawn by computer specifically for this book.



Contents

Preface ix

Introduction 1
Aims of the book. Motivation and format. How to approach the contents.

Three levels: example programs, a program package or a textbook. A substantial
example to illustrate what can be drawn after reading the contents of this book.

1 Graphics Operations of the ZX Spectrum 5
The Sinclair Spectrum microcomputer. How the computer makes television
pictures. BASIC commands for drawing with pixels. High-resolution and low-
resolution graphics. Simple character block graphics and animation. Video
games.

2 From Real Coordinates to Pixels 27
Routines for mapping real two-dimensional space into screen pixels. Scaling
factors, moving origin, drawing lines and polygonal areas given in real coordin-
ates. Windows on space. Patterns as a first step in two-dimensional graphics.

3 Two-dimensional Coordinate Geometry 45
Two-dimensional coordinate systems - origin, axes, points, vectors, lines and
curves, and their properties. Clipping. Functional representation and parametric
forms. Polygons and convex areas: inside and outside, orientation.

4 Matrix Representation of Transformations on Two-dimensional Space 62
Explanation of matrices. Translation, rotation and scaling (reflection) trans-
formations. Three-by-three matrix representation of two-dimensional space.
Using matrices to transform points. Inverse transformations. Combining trans-
formations. Positions. Construction and views of two-dimensional scenes.

5 Character Graphics on the ZX Spectrum 83
Characters on the Spectrum. Graphics characters. Medium-resolution graphics.
User-defined characters. Alternate character sets. A program for generating and
editing characters. Applications for games, etc. Tessellated patterns.



vi : Contents

6 Diagrams and Data Graphs 103
Construction of diagrams. Cursors. Labelling. Drawing axes. Histograms. Pie-
charts and hatching. Discrete and continuous graphs.

7 Three-dimensional Coordinate Geometry 124
Three-dimensional coordinate systems. Vector representation of points, lines
and planes. Properties of these objects - intersection of lines and planes. Repre-
sentation of surfaces. Sides of a surface. Orientation of two-dimensional triangles.

8 Matrix Representation of Transformations on Three-dimensional Space 143
Four-by-four matrix representation of translation, rotation and scaling (reflection)
transformations on three-dimensional space. Inverse transformations. Combining
transformations. Rotation about an arbitrary axis.

9 Orthographic Projections 154
Setup (and storage) of simple objects - vertices, lines and facets. Introduction

to projections. Orthographic projection. Positions (SETUP, ACTUAL and
OBSERVED). Maintaining the vertical. Definition of scenes. Bodies of revolution
(rotation).

10 Simple Hidden Line and Hidden Surface Algorithms 172
Orientation of three-dimensional triangles. Discussion of general problem of
hidden line and surface elimination. A simple algorithm for convex solids - an
implementation where objects are not stored (for example, body of revolution).
A “front to back’ algorithm for special mathematical surfaces.

11 Perspective Projections 182
Theory of perspective. Drawing simple objects in perspective. Extension of
previous algorithms to the perspective case.

12 A General-purpose Hidden Line Algorithm 191
An algorithm to deal with the general case of a perspective view of a stored
three-dimensional scene that has no special properties.

13 Advanced Programming Techniques 203
String displays. Display-file positions. Simple machine-code for graphics. Real
time animation. Utilities for program development. BASIC structure. Optimisa-
tion of BASIC for speed or space. Synchronised patterns.

14 A Worked Example for a Video Game 221
Problems likely to be encountered when constructing a video game.

15 Projects 235
Ideas for extended programs in computer graphics.



Contents
Appendix A: Implementing Programs on the 16K Spectrum
A vendix B: Basic Program Listings
References and Further Reading
Index
Where to Find Routines referred to in Text

Details of Software Cassette

vii

239

241

244

246

253

255



Introduction

This book may be read at a number of different levels. Firstly, it can be considered
as a recipe book of graphics programs for those who simply want to draw
complex pictures with their Spectrum. We naturally hope that the reader, having
drawn these figures, will be inspired to delve deeper into the book in order to
understand how and why the programs were constructed. Secondly, some of the
programs may be used as a package to produce and label data diagrams (pie-charts,
histograms and graphs) for business and laboratory use. Finally, and the main
reason for writing the book, it is an introductory text to computer graphics,
which leads the reader from the elementary notions of the subject through to
such advanced topics as character graphics, construction of three-dimensional
objects and hidden line (and surface) algorithms.

The complex programs later in the book are much too involved to be given as
a single listing. Furthermore we will see a great deal of repetition in the use of
elementary algorithms. Therefore we use the top down or modular approach in
writing and explaining programs. The solution to each major graphics problem is
conceived as a series of solutions to subproblems. These subproblems may be
further broken down into a set of problems to be solved (modules). These
modules will be programmed in the form of BASIC subroutines. Each is given an
identifier (in lower case characters) and will solve a particular subtask. Then the
totality of submodules combine to solve the required graphics problem. Because
the program listings are used to represent algorithms for the solution of these
subtasks, we decided in general not to use statements like GO SUB 6000, We
prefer instead to assign the subroutine identifier to the address value at the
beginning of the routine (for example, LET scene3 = 6000) and thus we can
write statements like GO SUB scene3. We use lower case for subroutine identifiers
(and groupings of routines in the text) only: all other program variables will be
in upper case to avoid confusion.

Spectrum BASIC does not have the facility of passing parameters into routines.
Values of input parameters have to be set in assignment statements outside the
routine, and the names of output parameters must be known if sensible use is to
be made of the routine. This can be rather inconvenient if you are using someone
else’s package of routines. It is essential that users know the names of the input
and output parameters; therefore in our routines we use the REMarks IN: (to
identify the INput parameters) and OUT: (for the OUTput parameters). We
number our programs so that all program statements are on lines ending in 0,



2 Advanced Graphics with the Sinclair ZX Spectrum

and REMarks on lines ending in 1 to 9 (except the naming of routines). The IN:
and OUT: REMarks follow directly the naming REMark on lines ending in 1 and
2 respectively. Also the cassette tape listings of programs use character codes to
highlight and colour various REMarks (see chapter 13). In cases where we think
that the word REM detracts from readability of a line we use these codes to
make it invisible. We have minimised the REMarks on the cassette so that we can
pack the maximum amount of program listing on to the tape. It is a good idea to
expand these listings by adding the complete REMarks, and SAVE them on your
own tapes.

For those who want only to run our programs, we give a list of complete
programs at the end of each chapter together with suitable data values. In fact
it is a good idea for all, including the serious readers, to SAVE the routines on
tape before approaching each chapter. They can then LOAD, MERGE and RUN
the programs as they occur in the text. The cassette tape available to accompany
the text contains all the larger listings in the book, as well as BYTE data for
diagrams and character sets used in later programs (which would otherwise have
to be constructed by readers themselves, a rather time-consuming process). Our
routines were written for the 48K Spectrum: if you have a 16K machine you
should read appendix A and note the changes that need to be made.

As an example of what to expect, we give below the program required to
draw figure 1.1, a line drawing of a body of revolution in which all the hidden
lines have been suppressed. This will work on both types of machine.

Figure I.1

The program requires the MERG(E)ing of listings 2.1 (‘start’), 2.2 (two
functions FN X and FN Y), 2.3 (‘setorigin’), 2.4 (‘moveto’) and 3.3 (‘clip’ and
‘lineto’). This combination of routines will be called ‘lib1’, and it was designed
for drawing line figures on the television screen.

To ‘1ib1’ must be added listings 3.4 (‘angle’), 8.1 (‘mult3’ and 9dR3%), 8.2
(‘tran3’), 8.3 (‘scale3’), 8.4 (‘rot3%), 9.1 (‘look3’) and 9.2 (‘main program’),



Introduction 3

Routines, which when combined we call lib3’, are used for transforming and
observing objects in three-dimensional space.

We need also listing 10.3 (‘revbod’) as well as the ‘scene3’ routine given in
listing I.1 below.

Listing 1.1

6000 REM scene3/flying saucer

6018 DIM X(12): DIM Y(12)

6020 DIM S(6): DIM T(6)

6030 DIM AC4,4): DIM B(4,4): DIM R(4,4)

6040 DATA ©,3, 3,2, 5,1, 5,0, 4,1, 0,-3
6050 RESTORE scene3

6060 LET revbod = 6500

6069 REM create object.

6070 LET NUMV =5

6080 INPUT "NUMBER OF HORIZONTAL LINES',NUMH
6090 INPUT "ANGLE PHI ";PHI

6100 FOR I = 1 TO NUMV + 1: READ S(I),T(I): NEXT I
6109 REM position the observer.

6110 GO SUB idR3: GO SUB Lcok3

6129 REM draw object.

6120 GO SUB revbod

6130 RETURN

Figure 1.1 requires the data HORIZ = 12, VERT =8, EX =1, EY =2, EZ = 3,
DX =0,DY =0,DZ =0, NUMH = 16 and PHI = 0. Each value has to be typed in
individually on request by the machine. The picture will take about 5 minutes to
draw, so be patient. Run the program with different data values. What happens if
HORIZ = 6 and VERT = 4, and the other values stay the same? Set HORIZ = 15,
VERT =10,EX=1,EY=-2,EZ=3,DX=1,DY =0and DZ = 0. Try
NUMH = 20, PHI = 0.1. You will have to read up to and including chapter 10
to understand the details of what is happening,

This example illustrates the reasoning behind the layout of this book. Assum-
ing that you are a fast typist, or that you have bought the accompanying tape,
then a relatively complex three-dimensional picture can be constructed very
quickly with a minimum of fuss. Even one-finger typists (like the authors) will
have little difficulty in implementing this and the other programs, before they
go on to study the book in detail.

We hope that this example will inspire you to implement all the programs in
this book, to try most of the examples, and then to go on to draw your very
own computer graphics pictures.

Now you can read the rest of our book and we wish you many happy hours
with your Spectrum,






1 Graphics Operations of the ZX
Spectrum

Throughout the course of this book we will be assuming that the reader is reason-
ably familiar with the BASIC programming language on the ZX Spectrum. In
this chapter, however, we shall be looking at some of the BASIC commands —
those concerned wholly or partly with graphics. With a series of example programs
and simple exercises we shall examine and explore the Spectrum’s capabilities.
In the chapters that follow we shall use this knowledge to develop a sound
understanding, both practical and mathematical, of computer graphics.

Initially we shall consider the hardware and software facilities available for
producing pictures. All microcomputers that produce television pictures generate
their graphical display using RASTER SCAN technology. This is also true of
most of the newer commercial mini and main-frame computers. An area of memory
is reserved to hold the display information for the screen and this is examined,
bit by bit, as the electron beam sweeps across the raster screen. The display is
composed of points, each of which is represented by a single bit (a binary on/off
switch) in the memory. In the simplest case the beam is switched on for a short
period each time a binary on is found, thus producing a point of light on the
screen.

PAPER and INK

On the Spectrum we are given two commands; these directly control the way
that the points are displayed. This affects the picture, which is made up of INK
dots (binary ons) on a PAPER background (binary offs). The commands, named
PAPER and INK (naturally), are called by using the name followed by a number
N@O<N<9).

PAPER N sets the background colour of the picture. After this statement is
executed, all newly generated binary offs in the memory will be displayed in
colour N (that is, until another PAPER command is executed).

INK N sets the points of light corresponding to binary ons to colour N in a
similar way.

The number N, when in the range 0 to 7, represents the colour printed above
the corresponding numeric key on the keyboard. If N is 8, then the colour



6 Advanced Graphics with the Sinclair ZX Spectrum

previously set for an area is used. If N is 9, then the colour of PAPER/INK is
set to either black or white and will contrast with the other INK/PAPER colour
currently in use. In general, black INK on white PAPER is clearest, as is obvious
from any book, and this is the normal setting the for Spectrum.

Display File

This type of picture is referred to as a memory-mapped display since it corres-
ponds directly to the contents of an area of memory. On the Spectrum this part
of the memory is known as the display file and starts at location 16384. A simple
exploration of how the display is affected by changing the contents of the
memory can be made with a program such as listing 1.1.

Listing 1.1

1@ LET CORNER = 16384
2@ LET VALUE = 137
3@ POKE CORNER,VALUE
4@ sToP

This program uses POKE to store a VALUE (entered as a decimal) in the first
location of the display file. This location holds the information for the top left-
hand CORNER of the screen. Since each location, or byte, contains eight binary
bits, the first eight points on the display are affected. These change to show a
pattern equivalent to the binary representation of the VALUE: in this case
10001001.

Exercise 1.1
(i) Experiment with different VALUEs and change the program either to,
(a) use BIN (binary) representation for VALUE, or to
(b) use a FOR. . .NEXT loop to change VALUE.
(ii) Use the PAPER and INK commands to change the background and fore-
ground colours and then re-run the program to see what difference this makes.

BORDER
When the PAPER colour is changed it soon becomes obvious that we cannot
write on the whole of the screen. A BORDER is left around the edge of the
PAPER to avoid the distortion at the edge of the screen suffered by all television
displays. The colour of this BORDER can be changed, in a similar way to the
PAPER and INK colours, by the command

BORDER N

where N is in the range O to 7 and indicates the new BORDER colour.



Graphics Operations of the ZX Spectrum 7

Character Blocks

A complete picture can be built up by storing various VALUEs at locations in
the display memory in a similar way to listing 1.1. For instance, we could store
the eight VALUEs 0, 98, 148, 136, 136, 136, 148, 98 in the display-file loca-
tions that represent the start of eight consecutive lines on the screen (see listing
1.2). We see the pattern of INK dots corresponding to the ‘ones’ shown in
figure 1.1.

128 64 32 16 8 4 2 1

00000000 = = 0
01100010 = 64 + 32 +2 = 98
10010100 = 128 +16 +4 =148
10001000 = 128 +8 =136
10001000 = 128 +8 =136
10001000 = 128 +8 =136
10010100 = 128 +16 +4 =148
01100010 = 64 + 32 +2 = 98
Figure 1.1

This is the way in which characters are defined (and redefined) on the
Spectrum, but we shall leave further investigation of this until chapter 5. Never-
theless it does illustrate that a picture, even as small as this, takes time to prepare
and requires a comparatively complicated program to produce the display.

Listing 1.2

10 LET CORNER = 16384

2@ LET LINE = 256

30 DATA 0,98,148,136,136,136,148,98
4@ FOR I =0 T0 7

5@ LET MEMORY = CORNER + IxLINE

60 READ VALUE

7@ POKE MEMORY,VALUE

80 NEXT I

9@ sToP

PLOT and DRAW

We have seen how the screen display can be changed by storing different values
in the display file. But there are over six thousand locations in the display file
and changing each of these individually would be quite tedious. We obviously
need a more effective method of changing the display.

BASIC provides us with graphics commands to deal with this problem, the
simplest of which are PLOT and DRAW. All the graphics commands treat the
display as a grid of 256 points horizontally by 176 points vertically (45056 in
total). These points are known as pixels and are individually identified by a pair



8 Advanced Graphics with the Sinclair ZX Spectrum

of integers. The graphics commands help in constructing pictures by allowing us
to control a graphics pen, which is initially positioned over pixel (0, 0). We can
now explain these commands.

PLOT X, Y moves our pen to pixel (X, Y) and plots an INK point there.
DRAW X,Y draws a line from our pen’s current position to the point, X
pixels away horizontally and Y pixels away vertically. If X is negative, the point

will be to the left and if X is positive, it will be to the right. Similarly if Y is
negative, the point will be below our old position, or if Y is positive, above.

After the execution of these commands, the pen remains over the last pixel to
be visited, awaiting the next command. Before examining the other more advanced
graphics commands, we shall first see what is possible using only lines and/or
points.

We are now in a position to draw large-scale pictures on the screen. For
instance, we can draw a box around that area of screen available for graphics
(listing 1.3).

Listing 1.3

10 PLOT 0,175
2@ PLOT 255,175
3@ PLOT 255,0

43 PLOT @,0
5@ IF INKEY$ <>'" THEN GO TO 50
6@ IF INKEY$ = "" THEN GO TO 60

7@ DRAW 2,175
80 DRAW 255,0
9@ DRAW @,-175
100 DRAW -255,0
110 sTop

This program first PLOTS points at the corners of the PAPER; it then waits
until a key is pressed before joining them up by DRAWing lines around the
boundary of the PAPER. On comparing the PLOT and DRAW commands we see
that there is an important difference in the way they work: the PLOT command
uses the absolute pixel coordinates, whereas the DRAW command uses the
relative positions of the points. This means that, in order to draw a line segment
between two pixel points on the screen, it is first necessary to use PLOT to
move the graphics pen to the point at one end of a line segment, then work out
the position of the second end point relative to the first, before finally the line
may be DRAWn. Note that in listing 1.3 all the points are decided before the

program is run. In general, points are more likely to be INPUT, READ or
calculated while the program is running.

Exercise 1.2

Write a program that calculates the position of lines to draw a grid. DRAW them

using two FOR. . NEXT loops (one for horizontal lines, the other for vertical
lines).



