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| PREFACE

During the past few years the authors have published a number of papers
relating to the study of point defects in solids. This book is to a large extent
a unified compilation of these publications. Some of them dealt purely with
thermodynamics; within the context many so-called “anomalous effects”
have found a natural explanation. In most cases the difficulties in the
interpretation of the experimental data arose from assumptions uncritically
adopted in standard thermodynamic concepts. It therefore became evident
that a careful separation of the thermodynamical definitions of defect
parameters from any assumptions whatsoever was absolutely necessary.
Furthermore thermodynamics impose some fundamental constraints on the
various defect parameters, whose consideration is essential not only to
experimentalists but also to theorists.

In recent publications the authors also studied the problem whether an
explicit connection between defect parameters and bulk macroscopic prop-
erties really exists. Zener and others made such an attempt long ago. The
question is of technological interest because one could then predict the
temperature and pressure dependence of the parameters knowing only
macroscopic properties as the volume and the elastic constants. The authors
have suggested that such a connection really exists. By comparing the values
of various defect parameters with bulk properties they noticed that certain
connections repeatedly appeared. With time an empirical law was found
describing correctly a large quantity of experimental data, many of them
obtained through completely independent techniques. The basic relation is
the formula g=cBRQ2, where g is the Gibbs defect energy, B is the
isothermal bulk modulus and £ the “mean”™ atomic volume. The coefficient
¢ is practically temperature and pressure independent and is fixed only by
the defect mechanism and the matrix material. The authors labelled the
above relation the ¢BQ-model, and for a long time they considered it an
empirical law.

The consistency with which this model applies to increasingly more cases
led to the idea that we were not dealing with a coincidence, but that a
deeper general law lay hidden within. A revision of the thermodynamics of
defects showed that a hitherto unknown formula exists connecting defect
parameters (Gibbs energy and volume) to bulk properties (B, and the
pressure derivative dB/dP). Inserting usual numerical values into this
formula it simplifies, to a very good approximation, to the ¢Bf2-model,
which can therefore be considered as a special case of a general thermody-
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namical law. The bounds of its errors can be determined and were found to
permit the use of this approximation for nearly all experimental situations.

In view of the above remarks the text of this book has been divided into
two relatively independent sections. In Part 1 we give a strict review of the
thermodynamics of point defects and the basic philosophy for the correct
analysis of the experiments, while carefully avoiding unwarranted assump-
tions. It starts with a brief review of general thermodynamics of solids in
order to aid readers who are less familiar with the subject. Part 2 studies the
connections of defect parameters with bulk properties, which is in essence
the cB{2-model. In the first chapters of this part it is presented as an
empirical model supported by a large quantity of experimental data. A strict
theoretical basis of the model is given in the last chapter. This division
enables the reader to select the point he is specially interested in without
having to go through the whole book.

The cBf2-model finds important practical applications in Metallurgy, as
it permits the prediction of diffusion coefficients under conditions of
temperature and pressure when diffusion measurements are difficult. For
such extreme conditions the measurements can be replaced by the much
easier elastic and expansivity experiments. As the cB§2-model develops new
theoretical connections between the defect parameters, a number of experi-
ments is proposed on various aspects of defects.

Another interesting application is found in the field of Geophysics;
certain solids emit electrical currents when the pressure reaches the value at
which the relaxation time for the attainment of thermodynamic equilibrium
becomes very short. This theoretical result became the impulse for experi-
ments on the variation of the electrical field in the earth during periods of
high seismicity. They led to the detection of transient electric pulses that can
serve for the prediction of earthquakes.

Since the completion of the main text of this book a number of
experiments has been published referring to point defects. The connection
between defects and bulk properties seems to become a promising tool in
the study of geophysical questions. Furthermore, pressure-induced currents
observed in the earth have been exceedingly well exploited in making
short-term predictions of the epicenter and the magnitude of earthquakes.
Some of these newest data are described in the Appendix.

Professors David Lazarus and Larry Slifkin went through a large part of
the manuscript and have made many instructive comments.

April 1985 P.AV.and K.D.A.

To the memory of my father Antonios (P.A.V.)
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1| INTRODUCTION

1.1 Scope and organisation of the book

The present book starts with a part on strict definitions of the formation
and migration parameters and on the laws that connect them. It is separated
from the second part which is based on the “cB2-model”; this model is
simply a proposal which states that the formation g' (or migration g™ or
activation g) Gibbs energy is proportional to B2, where B is the
isothermal bulk modulus and £ the mean volume per atom. As will be seen,
the proportionality constant — labelled ¢’ (or ¢™ or ¢**) — depends on the
process but is not an empirical quantity; it has a definite physical meaning
and can be shown to be practically temperature and pressure independent.
As will be proven in ch. 14 the ¢cBf2-model is of thermodynamical origin; in
this sense the second part of the book can be considered a natural
continuation of the first.

The “thermodynamical definitions” of defect parameters given in Part 1
are consistent with the general spirit of Thermodynamics and do not assume
any restrictions on their temperature and pressure variation apart from
those imposed by thermodynamical laws (e.g. from the third law that states
that the formation entropy of a vacancy has to tend to zero for T — 0 K for
a pure solid etc.). These thermodynamical definitions, although being of
major importance for a consistent analysis of the experimental data, do not
lead by themselves to a description of the data. In an analysis one has
anyhow to go one step further, i.e. to adopt some “assumptions” concerning
the temperature and pressure (volume) dependence of some thermodynami-
cal parameters. This is now the point where a dilemma emerges. In order to
realise whether these assumptions are plausible or not, one usually has to go
back to the microscopic picture of these parameters. This is achieved by
Statistical Thermodynamics; for this reason the statistical definitions of the
formation and migration parameters are also given in the first part of the
book. However, there is the difficulty that the “statistical definitions” are
easy only for harmonic or quasi-harmonic solids but not for real solids. This
shortcoming may be serious when one is making microscopic calculations
but not for the scope of the present book which only examines if the above
assumptions are reasonable or not. The cBS2-model will be found to be able
to replace them by others which are physically more acceptable. In the block
diagram of fig. 1.1 an attempt is made to compare them; it is restricted to
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Usual Physically acceptable
assumptions assumptions
The The The The
isobaric formation isochoric formation
formation volume formation volume
entropy vf entropy vf
sf does not s* depends on P
does not depend on does not in a manner
depend on [4 depend on at least
T T comparable
to the bulk
volume
of g is
varies linearly proportional
withPand T to BQ

Fig. 1.1. Comparison of usual assumptions with physically acceptable assumptions.

the formation process but analogous comments are valid for the migration
process. A brief discussion concerning their comparison is given below.

In the framework of the usual assumptions the formation entropy s’ and
enthalpy k' are accepted as temperature independent and the formation
volume o' is arbitrarily taken as temperature and pressure independent.
This set of “current assumptions” is from a thermodynamical point of view
absolutely self-consistent; attention is drawn, however, to the point that if
one changes even only one of these assumptions' (e.g. that s depends on
temperature) and retains the others, the above self-consistency is im-
mediately destroyed from a thermodynamical viewpoint. It has been re-
peatedly realised that the above “set of assumptions™ is correct only for a
pure harmonic solid. But we know that solids expand, that their isothermal
bulk modulus B decreases with temperature, that C, differs from C, and so
do many other properties which are characteristic of the real (i.e.
anharmonic) behaviour. A direct consequence of the anharmonicity is the
incontestable fact that some isobaric defect parameters are quite different
from the isochoric defect parameters (see ch. 3). Therefore it is at least
questionable whether harmonic assumptions can describe real (i.e.
anharmonic) solids. It is reasonable to expect that they do not.
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A strange confusion often arises concerning this point; when the experi-
mental data of real solids cannot be satisfactorily described from these
harmonic assumptions the data are considered as showing ‘“anomalous
behaviour”, as for example in the case of nonlinear Arrhenius plots.
However, these cases should be considered anomalous only if these harmonic
assumptions were actually able to describe the behaviour of a real solid.

Another example of such an inconsiderate use of the word “anomalous”
is the case of curved In D versus P isothermal plots. In such cases many
workers interpret this phenomenon as resulting from a coexistence of two
cooperating mechanisms for each of which the activation volume v** is
assumed pressure independent. However, a definite confusion reigns in this
respect. Once one uses the word “activation volume” one must recall its
correct thermodynamical definition v**' = (3g**'/9P); this definition does
not preclude a pressure variation of v*** and hence a curved “In D versus P
plot”, even when a single mechanism is operating; the “anomaly” arises at
the very moment the assumption is adopted that v*" is pressure indepen-
dent.

In order to prove the inacceptability of the current assumptions when
applied to real solids we shall discuss two of them, (1) the temperature
independence of the entropy s', (2) the pressure independence of the
formation volume v'. We will do this in the light of the quasiharmonic
approximation which, as generally accepted, is undoubtedly an important
progress with respect to the pure harmonic approximation.

(1) Temperature independence of s’. The entropy s' as mentioned is
currently assumed to be temperature independent; how far is this justified?
The statistical meaning of s’ is given by: s'= —k¥, In[w/(V)/w,(V )],
where ! are the frequencies of the real volume V' after the vacancy was
produced and w, those of the “isobaric ideal lattice”, i.e. at a different
volume V°. As the temperature increases while the external pressure re-
mains constant both the volumes ¥ and V' of the real and the ideal crystal
(usually) increase; we are quite sure that in these two solids the frequencies
w! and w, vary upon heating predominan.ly due to their volume variation.
It seems therefore totally unjustified or at least difficult to accept that the
sum X, Infw/(V)/w;(V°)] does not change, e.g. when the solid is heated
from T,/2 up to T,, where Ty, is the melting temperature. There is no
physical argument to guarantee that the above complicated sum (and
therefore the formation enthalpy) remains constant. In order to get a feeling
how dubious this assumption is, we recall the simple Gruneisen theory: for
the temperature interval from T,,/2 to T the volume of mono-atomic
crystals increases by ~ 5% and hence the mean frequencies of both crystals
are reduced typically by y X 5% = 15% for y = 3.
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On the other hand one could replace the above “assumption” by another
which is physically more acceptable: upon isochoric heating the sum
—kX, In[w/(V)/w;(V)], where the frequencies w; and w, now refer to the
same macroscopic volume V can be well considered as temperature indepen-
dent. This is physically plausible because — according to the physical basis
of the quasiharmonic approximation — the frequencies are explicit functions
only of the macroscopic volume; therefore, due also to the fact that upon
isochoric heating there is direct experimental confirmation that the frequen-
cies exhibit only a very small explicit temperature dependence, one is led to
the conclusion that the sum — k¥, In[w!(V)/w,;(V)] can well be considered
temperature independent. (This sum as we shall see is simply the thermal
entropy s* for an isochoric production of a vacancy.) Combining now this
“physically acceptable assumption” with the well-known fact that (dB/3T'),
is also temperature independent (which is also theoretically justified in the
quasiharmonic approximation [1]) one is directly led — by thermodynamics
(see ch. 14) — to the conclusion that the Gibbs formation energy g© should
be linear with respect to B2 where the coefficient of Bf2 has to be
temperature independent (recall for V = constant).

(2) Pressure independence of v/. Another current assumption is that the
formation volume v’ is pressure independent. The thermodynamical mean-
ing of vf is that it represents the variation ¥ — V° where V° is the initial
volume and V the real volume after the production of a vacancy under
isothermal and isobaric conditions. There is no doubt that both V' and V'°
have to decrease upon compression. There is no guarantee however that
their difference, i.e. v', also remains constant. From a purely physical point
of view the assumption accepting v’ as pressure independent (i.e. that the
compressibility k of the volume v is zero) is equivalent to saying that the
isothermal compressibility « of the crystal decreases after the introduction
of vacancies under isobaric conditions. (see eq. 3.57). This is really dubious
and contrary to common sense because one expects physically the com-
pressibility to increase and not to decrease upon creation of vacant sites;
one could assume at least that the compressibility remains almost the same
which — from thermodynamics — directly leads to the conclusion that the
compressibility ! of the formation volume is comparable to the bulk
compressibility k. When one now combines: either the physically plausible
assumption that k"= k with the fact that d B/d P is pressure independent
(which is exactly valid in the quasiharmonic approximation (1]), or the
reasonable physical assumption that k' exceeds x only by a few times
(clearly justified from the microscopic point of view) with the well-known
fact that d B/d P varies only slightly upon isothermal compression, one can
directly derive from thermodynamics (see ch. 14) that g’ is linear in BQ



