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PREFACE

This book contains a collection of mathematical topics that are of immense
value to everyone who is pursuing a course of study in science or engineer-
ing. While a variety of mathematical tools are needed to successfully com-
plete a course of study in these fields, most science and engineering curri-
cula include mathematical courses in calculus and algebra only. Important
concepts such as proof methods; difference equations; combinatorics; graph
theory; etc. are often omitted and the student is expected to pick up these
concepts along the way (somehow).

In this text, I have made an attempt to include those mathematical
topics whose understanding is essential to science and engineering, but
which are not covered in mathematical courses traditionally required of stu-
dents in these disciplines. The topics covered are: logic; sets; relations;
functions and computability; analysis of algorithms; recurrence equations;
combinatorics; discrete probability; graphs; and algebra. While many of
these topics are the subject of individual courses offered in traditional
mathematical curricula, mathematics departments seldom have a one or two
course sequence that covers all of them. The depth of coverage of each of
the topics included in this text is about what is needed to successfully com-
plete courses typically found in science and engineering curricula.

There is a bias towards computer science in this text. Such a bias can
hardly be avoided today given the rapid growth in the use of computers and
the permeation of computer science courses in virtually all curricula. The
material in this text is illustrated by a large number of examples that have
been carefully and completely worked out. There are over two hundred
exercises that have been designed to enhance one’s understanding of the
material.
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CHAPTER 1

LOGIC

1.1 PROPOSITIONS AND WELL FORMED FORMULAS

Logical reasoning is the stuff proofs are made of and proofs are what
scientific and other knowledge rests upon. The importance of proofs and
thus of logical reasoning and logic cannot be overstated. Our faith in the
thousands of theories postulated by scientists, mathematicians, etc. would
be considerably less if there did not exist strong (and often conclusive) logi-
cal arguments in favor of these theories. What would be the status of the
following statements if it were not for the existence of mathematically
acceptable proofs establishing their validity?

(a) If A is a right angled triangle with sides of length a, b, and ¢, then a?
+ b2 = ¢? where cis the length of the hypotenuse.

(b) The sum of the angles in any triangle is 180 degrees.

(¢) The derivative of x? is 3x2.

(d) iiz n(n+1)/2.

i=1
(e) The area of a square of side dis d?.

Given the importance of logical reasoning to mathematics, science,
engineering, etc., it is appropriate that we begin our study of mathematical
concepts with the study of the principles of reasoning (i.e., logic). First, we
introduce some terms.

A declarative sentence is any sentence that can possibly be true or false.
Some examples of declarative sentences are:

(a) The voltage across a resistor is the product of the current and the
resistance (V = [R).

(b) There exist intelligent life forms on planets other than earth.

(¢) Tom dislikes the discrete structures course.

(d) This text is fantastically clear.

(e) Mary had a little lamb.

It is quite meaningful for us to consider whether each of the above
declarative sentences is true or false. Every electrical engineer knows that

1



2 Logic

(a) is true for ideal resistors. Tom knows whether (c) is true or not, and
most three year olds have reasons to believe that (e) is true. One could have
considerable debate over the truth of (b) and (d).

A proposition is a declarative sentence that must be either true or false
but not both. Each of the five declarative sentences listed above is a proposi-
tion. We already know that each is either true or false. It is not too difficult
to see that none of these five sentences can be both true and false. For
example, this text is either fantastically clear or it is not. It cannot be both
fantastically clear and not fantastically clear.

The use of the word either, in English, is often ambiguous. For exam-
ple, consider the sentence:

Tom is either guilty or innocent.

This sentence is readily seen to be equivalent to the sentence:
Tom is either guilty or innocent, but not both.

On the other hand, the sentence:

Good performance on either the exams or the assignments is
sufficient to pass the course.

is not equivalent to:

Good performance on either the exams or the assignments, but not
on both, is sufficient to pass the course.

Rather, it is equivalent to:

Good performance on either the exams or the assignments, or on
both, is sufficient to pass the course.

Generally, the context in which ‘either a or b’ is used determines
whether ‘either a or b or both’ or ‘either a or b but not both’ is meant. To
avoid possible confusion resulting from the use of the word ‘either’, we shall
usually state explicitly which interpretation is intended. When no interpreta-
tion is provided, we shall always mean ‘either or both’(in this text).

Not all sentences are declarative sentences. For example:

(a) Pass me the butter.
(b) Has flight 201 from New York arrived?
(¢) Can’tyou do anything right?



Propositions and Well Formed Formulas 3

Furthermore, not all declarative sentences are propositions. For
example, the sentence:

This statement is false.

can be neither true nor false. If the statement is true, then it asserts that it is
false. If it is false, then it must be true. All propositions obey the following
law:

Propositional Calculus Axiom: Every proposition is either true or
false (but not both).

Observe that the above axiom includes the famous law of contradiction which
states that no proposition is both true and false.

In algebra, symbols are used to denote numbers. For example, in the
arithmetic expression x + y, the symbols x and y denote variables and the
expression x + y has value 10 when x is assigned the value 8 and y the value
2 or when x = 6 and y = 4, etc. In logic, we use capital letters (A4, B, ..., Z)
as variables (called propositional variables). These variables can be assigned
propositions as values. For instance, P could denote any of the following
propositions :

(a) It rains in Minneapolis.

(b) Stan is a democrat.

(¢) Minnesota does not have a computer science department.
etc.

The truth value of a propositional variable P is true if the proposition
assigned to it is true. It is false otherwise. If P denotes either of propositions
(a) and (b) above, it is true. If P denotes proposition (c), then the truth
value of Pis false. Clearly, any propositional variable (i.e., 4, B, ..., Z) can
have a truth value either true or false depending upon which proposition it
denotes. Propositional variables can be combined together using logical
operators to get well formed formulas (wffs). This is similar to the use of +,
—, /, *, etc. to combine together arithmetic variables to obtain arithmetic
expressions. The logical operators we shall be dealing with are: =(not), \/
(or), A (and), => (implies), and <=> (if and only if).

NOT (-)

The operator —~ denotes negation. If Pis a proposition then ~ P (also written
as P) is its negation. The negation of a proposition P is another proposition
that is true whenever P is false and is false whenever P is true. This can be



4 Logic

stated in terms of a truth table (Figure 1.1(a)). In a truth table, the truth
values true and false are abbreviated T and F respectively. The truth table

P|-p P 0| PVO P Q| PAO
T| F T T T T T T
F| T T F T T F F
F T T F T F
F F F F F F
(a)-P (b) P\ O () PN\ O
P Q| P=0 P Q|lP<= 0
T T T T T T
T F F T F F
F T T F T F
F F T F F T
(d P=0 (e) P<= Q

Figure 1.1 Truth tables for logical operators.

for = P has one column for P and one for = P. In the column for P we list the
two possible truth values of P. The column for = P gives the corresponding
truth values for = P. Hence, from the truth value of P and the truth table of
Figure 1.1(a) one can determine the value of -~ P. Consider the proposition:

This pie is good.
Its negation is:

This pie is not good.

Which is equivalent to:

It is not the case that this pie is good.

OR (\/)

The operator \/ obtains the disjunction of two propositions. The disjunction
of the propositions P and Q is written P\/ Q and read as "P or Q". Figure
1.1(b) gives the truth table for P\/ Q. The truth table for P\/ Q has three
columns. One for each of P, O, and P\/ Q. There is one row for each combi-
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nation of truth values of Pand Q. The entry in the column for P\/ Qin any
row of the truth table gives the truth value of P\/ Q when Pand Q have the
truth values given in that row. Note that P\/ Qs true iff (if and only if) at
least one of Pand Qs true.

AND (A)

The conjunction of two propositions P and Q is obtained by using the opera-
tor A. It is denoted P A\ Q and read as "P and Q". Figure 1.1(c) gives the
truth table for P\ Q. Observe that the truth value of P A Qs true iff both P
and Q are true.

IMPLICATION (=)

P => Q isread as "if Pthen Q" or as "P implies Q". P is the antecedent of
"==>"and Q is its consequent. The truth table for P => Qs given in Figure
1.1(d). This truth table merits further discussion. The statement if P then Q
essentially says that Q is true whenever P is true. It does not say anything
about the truth value of Q when P is false. So, when P is false, Q can be
either true or false. Hence the entries corresponding to P = Fand Q = Tor
Fare T. The only time the statement P => Qs false is when P is true and Q
is false.

To understand the preceding discussion better, consider the proposi-
tion R:

If it rains, the ground will get wet.

Let P denote "it rains" and let Q denote "the ground will get wet". The propo-
sition R is then equivalent to P => Q. If it rains and the ground doesn’t get
wet, then R is false. So, the truth table entry for P true and Q false is F.
Now, suppose it doesn’t rain. It is still possible for the ground to get wet
(someone may throw a bucket of dirty water on the ground). But, the fact
that the ground has gotten wet despite the fact that it hasn’t rained does not
contradict R. This agrees with the truth table entry corresponding to P false
and Q true. Similarly, if it doesn’t rain and the ground isn’t wet then Pand Q
are both false. Once again, this does not contradict the statement R and R
remains true. The important point is that a statement of the type if P, then
Q (written P = Q) is false only if it is the case that Q is false when P is
true. For P => Qto be true Q must be true whenever Pis true. Q can take
on any truth value when Pis false.
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IF AND ONLY IF (<=, iff)

P << Q (Piff Q) has the truth table given in Figure 1.1(e). P < Qis
equivalent to the statement Pimplies Q and Q implies P. So, the truth table
for P <<=> (Q must correspond to that for (P => Q) A (Q => P). One
may easily verify that this is so.

Other logical operators such as exclusive or (XOR), not and (NAND),
and not or (NOR) are defined in the exercises.

A well formed formula (wff) is defined recursively as below:

(a) All propositional variables and the constants true and false are wffs.

(b) If « and B are wifs, then - «, @, («), [a], (« \/ B), (@ A B), (a« =
B), (@ <> B), [a /B, [a ABl, [« =>8], and [« <> ] are
all wffs.

(c) Nothing else is a wff.

Some examples of well formed formulas are:

(a) (P\/ O
(b) (P=0)
(© [PA QI

(d (((PAOYV R) =>4\ A)
() ((P<=> OAR <= 9V((T=YT))

We shall often eliminate many of the parentheses that arise in wffs.
This, of course, will be done only when there is no confusion about the
meaning of the wff. So, for example, the five wffs given above can also be
written as:

(a) PV O
(b) P=0
(c) PAO

(d (PAOVR=>4NA
(e) (P<=> OAN(R <= 9))V(T=Y)

The logical operators may be assigned priorities, P, as below:

P=) =5 PN\) =4, P\)) =3 P(=) =2;and P(<= ) =1

These may be used to resolve ambiguities when parentheses have been
dropped. Thus, if the sequence aQb appears in a wif (where a and b are logi-
cal operators), then Q is the right operand of a iff P(a) > P (b). If Qis not
the right operand of a, then it is the left operand of b.
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Let us look at a few examples of translations of English statements into
wifs. Consider the statement:

If Tom fails the discrete structures final, he will have to retake the
final or be placed on probation.

Using the symbolism:

P:  Tom fails the discrete structures final
Q: Tom will have to retake the final
R: Tom will be placed on probation

the above statement may be written as:
P=Q\V R

As another example, consider:

Mary can write her program in Pascal or Fortran or not write it at
all. If she does not write her program she will get a zero and fail the
course. If she fails the course she will be put on probation and if she
gets a zero her boyfriend will desert her. If Mary writes her pro-
gram in Fortran, she will fail the course but if she writes it in Pas-
cal, she will pass.

Let us use the symbolism:

Mary writes her program in Pascal
Mary writes her program in Fortran
Mary does not write her program
Mary gets a zero

Mary fails

Mary is put on probation

Mary’s boyfriend deserts her

S DR LS I

One might be tempted to write the first sentence concerning Mary as:
P\/ QV R
Observe that it is not possible for P, Q, and R to all be simultaneously true.

Assuming that it is possible for Mary to write her program in both Pascal and
Fortran, the first sentence takes the symbolic form:

(P\/ QV R) A\ (P\/ Q=>R)
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The wif corresponding to the set of statements about Mary is:

(PVOVRNANPYQ=RANR=SADA(T=>UA(S
= NANQ=DAP=T1

Given a truth value for each of the propositional variables appearing in
a wif one can determine the truth value of the wff. A wif that evaluates to
true for all possible truth assignments to its variables is a rautology (a tautol-
ogy is also called a theorem). A contradiction is a wif that evaluates to false
for all possible truth assignments to its variables. A wff that is not a contra-
diction is said to be satisfiable. Note that a wif is satisfiable iff there is at least
one set of truth assignments to its variables under which the wff evaluates to
true.

One way to determine if a wff is a tautology, is satisfiable, or is a con-
tradiction is to use the truth table method used earlier. By examining the
columns for = P, P\/ Q, P\ O, P=> Qand P <> Qin Figure 1.1, we
can conclude that neither of these wffs is a tautology. For example, P\/ Qis
false when both P and Q are false. Also, neither of these is a contradiction.
Each of these wffs is satisfiable. Figure 1.2 gives truth tables for several
other wifs. Each of the wifs considered in Figure 1.2 is important. P A P is
the negation of the law of contradiction. P\/ P is the law of the excluded
middle. As expected, PA Pis a contradiction and P\/ Pis a tautology. The
wifs of Figures 1.2(c) to (e) are all tautologies. The tautology (P \/ Q)
<<= (P = Q) implies that we can do away with the operator" =>". As
stated earlier, P <=> Qs equivalent to (P => Q) A (Q => P). So, the
operator " <= " can also be eliminated and we need only consider the
three operators A, \/, and — . It is. however, often more convenient to use
= and <> in wffs rather than their equivalent forms. The tautologies
of Figures 1.2(d) and (e) are known as DeMorgan’s Laws.

Since each variable in a wif can be assigned one of two possible values
(Tor F), the number of rows in the truth table for a wif with r variables is 2’.
When r=3 the number of rows is 8 and when r=6, the number of rows is
64. The truth table method is therefore suitable only for wifs with a small
number of variables. In subsequent sections, we shall examine alternate
methods to determine if a wil is a tautology, is satisfiable or is a contradic-
tion.

1.2 NORMAL FORMS AND BOOLEAN ALGEBRA

We have seen how to obtain a truth table for any given wif. Suppose we are
given a truth table. How can we obtain a wif corresponding to this table?



