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FOREWORD

Advances in Enzyme Regulation is now in its fifteenth volume. The appreciative
reception of this series reflected the need for such a source of information,
inspiration, laboratory and teaching companion.

Volume 15 concentrates on subjects which have reached the state of
productive summarization and critical  evaluation in the light of extensive new
results. This book also lives up to its goal of advancing a few steps ahead of the
general front of mammalian enzyme regulation studies.

It has been my editorial policy to impose as few restrictions as possible,
emphasizing, however, the objectives of excellence of contribution, perfection in
presentation, and penetration and scope in interpretation. This principle gives a
wide range of freedom to the participants to express their concepts. Thus, the
responsibility for detail ‘— accuracy of reporting, preciseness of references,
allocations of priority, expressions of judgment and evaluation — lies with the
individual authors.

The Editor, who enjoyed the advice of leaders in the field, has been
organizing the Symposia and selecting new topics and speakers on the basis of
immediate and long-range significance of the scientific contributions. It is hoped
that the comments and suggestions of investigators and teachers in this field will

~ continue to come to the Editor’s office and contribute to shaping the course of
forthcoming conferences and volumes.

Indiana University 1976 GEORGE WEBER, Editor
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a-KETO ACID DEHYDROGENASES
AND ACYL-CoA SYNTHETASES
FROM PIGEON BREAST MUSCLE

S. E. SEVERIN and M. M. FEIGINA
Department of Biochemistry, Moscow State University, Moscow, U.S.S.R.

INTRODUCTION

Oxidative metabolism of a-keto acids — pyruvic and a-ketoglutaric acids — is in
many ways similar. In both cases the same coenzymes function and the end
products are CO,, acyls of CoA, and reduced NAD. Both processes are catalyzed
by multienzyme complexes of intricate structure — pyruvate and a-ketoglutarate
dehydrogenases, which are in close interaction with other enzymes, acyl-CoA
synthetases in particular. Both a-keto acid dehydrogenases, as well as acetyl- and
succinyl-CoA synthetases, not only possess similar properties, but also have
features that distinguish these enzymes from one another.

The aim of this communication is to present some data on the similarities and
differences between these enzymes isolated from pigeon breast muscle.

MATERJALS AND METHODS
a-Keto acid dehydrogenases and succinyl-CoA synthetase were isolated from
breast muscles of pigeons. Acetyl-CoA synthetase was isolated from beef and
rabbit heart muscles.

Isolation and purification of the pyruvate dehydrogenase complex were carried
out essentially as described earlier by Glemzha et al.(1). However, the enzyme
chromatography on cellulose-suspended calcium phosphate gel and subsequent
(NH4), S0, salting out were replaced by Sepharose 4B gel filtration and
ultracentrifugation at 140,000 X g. Separation of the pyruvate dehydrogenase
component from the complex was carried out by incubating the enzyme with
0.5M KBr, as described by Khailova et al (2). The activity of the pyruvate
dehydrogenase ¢omplex was measured from the increase in NADH concen-
tration; the activity of the pyruvate dehydrogenase, i.e. the activity of the
decarboxylating component, was determined at 600 nm by dichlorophenol
indophenol reduction (3).

Isolation and purification of the a-ketoglutarate dehydrogenase complex was
performed according to the method of Sanadi (4) modified by including a
Sepharose 6B chromatography step (5). Isolation of the a-ketoglutarate
dehydrogenase component was carried out as described earlier by Severin and
Gomazkova (5). The activity of the whole complex was measured by observing
NADH production at 340 nm on a Hitachi-356 spectrophotometer. The activity

1



2 S. E. SEVERIN and M. M. FEIGINA

of the a-ketoglutarate dehydrogenase component was determined by
ferrocyanide reduction at 420 nm (5).

Acetyl-CoA synthetase was isolated as a homogeneous preparation from
.._etone powder from rabbit (6) and beef (7) heart by the method of Campagnari
and Webster (8), with some modifications.

The activity of the enzyme was measured by several techniques: from the
decrease in CoA in the reaction with sodium nitroprusside; by isotope exchange
using C'“4-acetate, H®-ATP and P*?-inorganic pyrophosphate.

The individual reaction stages were also studied by adding synthetic acetyl
adenylate to a test tube, and the reaction subsequently was directed towards the
formation of either acetyl-CoA or ATP.

Succinyl-CoA synthetase was isolated from pigeon breast muscle according to
Meshkova and Matveeva (9). The activity of the enzyme was measured
spectrophotometrically from succinyl-CoA formation (absorbance at 235 nm). A
unit of activity is determined as the amount of enzyme catalyzing the formation
of 1.0 umol of succinyl-CoA per min at 25°C.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis and protein
molecular weight determination were performed according to Weber and
Osborn (10). Molecular weight of multiple forms of the a-ketoglutarate
dehydrogenase component was determined electrophoretically in a poly-
acrylamide gel gradient according to Kopperschliger et al. (11).

Paper electrophoresis (horizontal) was carried out at 1-2°C in 0.05M
tris-acetate buffer, pH 7.5, containing 1 X 107> M EDTA; the voltage gradient
was 40 V/cm and duration 90 min.

Radioactivity was measured on a Nuclear Chicago Mark II automatic
scintillation counter.

Electron microscopy studies of samples negatively contrasted with 0.25%
solution of sodium phosphotungstate were performed on a Hitachi HU-125
electron microscope at 100 kV and magnification of X 100,000.

v-P32.ATP with specific activity of 15.6 Ci/mmol was obtained from
Amersham; 8-C' *-ATP with a specific activity of 477 uCi/mmol was supplied by
the Institute for Utilization, Production and Investigation of Radioisotopes
(UVVVR, CSSR); N(CHj;)-thiamine, N(CH3), -thiamine and hydroxythiamine
were obtained from A. Schellenberger’s laboratory (M. Luther Umversnty, Halle,
G.D.R).

RESULTS AND DISCUSSION

Pyruvate Dehydrogenase (Complex )*

With the exception of the preliminary data obtained by Jagannathan and
Schweet in 1952 (18), pyruvate dehydrogenase of skeletal muscles, including
pigeon breast muscles, has not been studied so far.

*Data from Glemzha et 4l.(1), Khailova et al. (2, 3 12—-15) and Severin et al. (16, 17)
are used.
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The pyruvate dehydrogenase complex consists of . pyruvate-lipoate
oxidoreductase (EC 1.2.4.1), lipoate acetyltransferase (EC 2.3.1.12) and
lipoamide dehydrogenase (EC 1.6.4.3), and catalyzes at least three successive
reactions (Fig. 1):

CH ¢ COOH

CoASH

CoA-ﬁ-CH
o]

FIG. 1. The reaction sequence catalyzed by the pyruvate dehydrogenase complex. The

upper circle represents the reactions catalyzed by pyruvate dehydrogenase (Ej), leading to

pyruvate decarboxylation and acetyl lipoate formation. The middle circle represents the

lipoate acetyltransferase-catalyzed reactions (Ejp), which lead to formation of acetyl-CoA

and reduced lipoic acid. The lower circle illustrates the lipoamide dehydrogenase

(Eppp)-catalyzed reactions, which lead to NAD reduction and formation of the oxidized
form of lipoic acid.

1. Decarboxylation of pyruv1c acid and oxidation of the reaction product
(E1);

2. Transfer of the acetyl residue to CoA, accompamed by reduction of the
disulfide group of lipoic acid (E;);

3. Oxidation of lipoic acid and production of reduced NAD (E;).

It has recently been found that there are two more enzymes in the complex,
kinase and phosphatase (9), which possess regulatory functions.

The multienzyme pyruvate dehydrogenase complex, isolated from pigeon
breast muscle and purified to homogeneity in this laboratory, has a sedimenta-
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tion coefficient S;9 w= 70S and appears under an electron microscope as a
spherical structure. 400 to 450 A in diameter. The central part of the complex is
occupied by the transacetylase molecule, which under an electron microscope
exhibits a clear structure at three different projections corresponding to a
pentagonal dodecahedron (Fig. 2). This component is 210 to 250 A in diameter
and its S, ¢ w= 27.4S. Transacetylase is surrounded by lipoyl dehydrogenase and
pyruvate dehydrogenase molecules with S, w of 6.1 and 7.88, respectively. The
latter component is about 70 A in diameter and has a marked tendency to
aggregate and to form long strands following negative contrasting (Fig. 3).

The following results were obtained after complete deaggregation of the
complex by sodium dodecyl sulfate and subsequent polyacrylamide gel
electrophoresis. The lipoyl dehydrogenase component yielded identical subunits
with a molecular weight of 57,000. The transacetylase component also produced
one kind of subunit, only with a molecular weight of 68,000 (3). A particular
feature of the dehydrogenase component was that it consisted of two subunits,
a- and - with molecular weights of 41,000 and 37,000, respectively. The
molecular weight of the dehydrogenase component is 156,000 (12), hence its
structure apparently corresponds to a formula of a,f, . Different combinations
of the subunits may produce oligomers with lower molecular weights (70,000
and 104,000), which differ in specific activity (12).

The primary structure of pyruvate decarboxylating component subunits, in
particular the structure of the active site of the enzyme, has not been deter-
mined. It is, however, clear that a very important role in the enzymatic
decarboxylation of pyruvate is played by the histidine residue of the enzyme.
Photoinactivation or diethylpyrocarbonate acylation of this residue deprives the
enzyme of its activity. The pH dependence of photoinactivation is characteristic
of that for histidine residue inactivation. According to the evidence obtained in

- this laboratory, histidine serves an anchoring function in binding the thiamine-PP
coenzyme (14, 17). The SH-groups of the protein were also shown to be
essential for enzymatic activity, since their fixation with sulfhydryl reagents,
p-chloromercuribenzoate, for example, resulted in the inactivation of the
enzyme (13). Using thiamine-PP analogs, we have found that for the first step in
the pyruvate dehydrogenase reaction the participation of not only the second
carbon atom of the thiamine-PP thiazole ring, but also of the amino group at the
fourth carbon of the pyrimidine ring is necessary. Substitution of the amino
group by its N-methyl- or N-dimethyl-derivatives or by a hydroxyl results in a
loss of enzymatic activity (16) (bicentral mechanism of Schellenberger). The
derivatives have no coenzyme activity and are competitive inhibitors:

Ki «-N(CH,)-TPP =4 X 107° M; K ,.N(CH,),-TPP = 8.5 X 107° M;
K ++-N-OH-TPP =29 X 108 M (16).



«KETO ACID DEHYDROGENASES AND ACYL-CoA SYNTHETASES S

The pyruvate dehydrogenase complex from pigeon breast muscle, like similar
enzymes from mammalian heart and kidney (19—21), can be phosphorylated
and dephosphorylated, and this markedly affects its enzymatic activity (15).
Phosphorylation is catalyzed by a kinase which transfers the terminal
phosphoryl moiety of ATP to the subunit of the enzyme, and this subunit may
be regarded as a regulatory one (Fig. 4). The transfer results in a decrease or in
complete suppression of the decarboxylase activity of the complex or isolated
decarboxylating component. Restoration of the activity involves the splitting off

LTA LDH PDH
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FIG. 4. Gel distribution of protein-bound P*? following electrophoretic separation of the
pyruvate dehydrogenase complex in the presence of sodium dodecyl sulfate.

of the phosphoryl group by the corresponding phosphatase. Both enzymes,
kinase and phosphatase, are parts of the pyruvate dehydrogenase complex. Their
activity is regulated by Mg?* concentration: at low Mg?* concentration (and in
the presence of ATP) the enzymatic activity is inhibited, since phosphorylation
takes place; «1 hisher Mg?* concentrations phosphatase is activated, resulting in
the splitting 't of the phosphoryl group and the restoration of activity. It
shenid be o 7 that activation of the phosphatase activity of the pyruvate
dehy drogenace ~omplex from pigeon breast muscle requires-a much lower Mg?”*
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concentration (K, = 0.25 mM) as compared to the mammalian tissue enzymes
Km =2 mM).

After the phosphoryl group had been split off, the enzymatic activity of the
pyruvate dehydrogenase complex was often higher than the initial one (Fig. 5).
This fact indicates that part of the isolated complex was phosphorylated and
that the phosphorylation and dephosphorylation processes are a means of an in
vivo regulation of pyruvate dehydrogenase activity in muscle tissue.

activity, %

© 20 30 40

time of incubation (min)

FIG. 5. Changes in pyruvate dehydrogenase activity (— x — x —x —) and protein-bound
radioactivity (— e — e — e —) during incubation of the pyrivate dehydrogenase complex
with ATP (0.1 mM) and MgClL, (10 mM).

Thus, several successive reactions resulted in the formation of acetyl-CoA
from pyruvate (Fig. 1). The enzymes participating in this process are regulated
systems: the first of them, which decarboxylates pyruvate, -hanges its zctivity
during phosphorylation and dephosphorylation; the s2cond a2, which catalyzes
the transfer of the acetyl resicue to CoA, is sguluted Ly thie rat: o7 free
HS-CoA (activator) to its acetyl derivatives (inhih: o}

Many of the described properties of the pyrivatz 'e¥  » .iav conidex
from pigeon breast muscle are similar to those of tac 2 - iaied fom
various mammalian tissues. Table 1 providesac:  a.¢ 1« .



