COMPUTING

A Problem-Solving Approach
with FORTRAN 77

T. RAY NANNEY

COMPUTING

A Problem-Solving Approach
with FORTRAN 77

T. RAY NANNEY

Professor of Computer Science
Furman University

Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Nanney, T. Ray
Computing: a problem-solving approach with
FORTRAN 77.

Includes index.

1. FORTRAN (Computer program language)
2. Eh;ctronic digital computers—Programming.
1. Title.
QA76.73. F25N36 001.64°24 80-28220
ISBN 0-13-165209-5

To
Elizabeth Nanney

who inspired this work and helped
with every phase of its development.

Editorial/production supervision and
interior design: Service to Publishers

Cover design: Lee Cohen

Manufacturing buyer: Joyce Levatino and
Gordon Osbourne "

© 1981 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America
10 98 76 54 321

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

PREFACE

¥

This book is a text for a beginning course in computer science in a liberal arts environ-
ment. The organization of topics in the book is the result of the continual evolution of
a course that has been taught at Furman University since 1968. For the majority of
students at Furman, this course would be the only one that they would take in com-
puter science. Yet, many of them would later be required to write computer programs
both in courses.and in independent study in their own disciplines. It was essential,
therefore, that the students have the opportunity to become good programmers. I had
observed in previous introductory courses that many intelligent, motivated, nonscience
students had great difficulty mastering the material in the traditional programming-
oriented introductory course. I believed this problem to be a result of the teaching
method used to present the material, not the inadequacies in the abilities of the
students. :

The format of the present course crystallized in the summer of 1975 during a
six-week visit to the laboratory of Professor Seymour Papert of the Artificial Intelli-
gence Laboratory at the Massachusetts Institute of Technology. In his laboratory, I
observed average 10- and 11-year-old children writing relatively complex programs
in the computer language LOGO. This reinforced my belief that any motivated college
student should be able to learn programming. Many of the techniques used in this
book have their origin in ideas found in the work of Professor Papert.

The material in this book has been used in approximately 24 sections of the

" introductory computer science course during the period from 1975 to 1980. Although
the evidence is rather qualitative, there appears to have been a significant improvement
in the performance of students, especially nonscience majors, using the approach.
Grades have improved, more programs have been completed, and students report
having more fun than in previous years.

I am grateful to my colleagues James H. Keller and E. James Runde, who were
willing to use this book while it was still evolving and who gave me valuable feedback.
Three of my former students, C. Joseph Bridwell, James M. Coggins, and Cary A.
Coutant, helped me in many ways. I am especially grateful to Seymour Papert, who
gave me a stimulating place to work during the most crucial part of the writing.

T. RAY NANNEY

viii

TO THE STUDENT

There are many approaches to the study of computing. This book emphasizes the
writing of computer programs, but it also presents many other important aspects of
computing. The course is essentially nonmathematical and is designed to be useful to
both science and nonscience majors. No previous knowledge of computers, program-
ming, or other specialized skills is required.

Regardless of your future interests and activities, it will be difficult (probably
impossible) to avoid contact with computers. Consequently, in this book you will be
introduced to programming, terminology, computer languages, applications, and social
implications of computers. If you work conscientiously to master the material, at the
end of the course you should be able to use the computer to solve problems that
interest you. You should also have gained insight into many other important topics in
computing.

The writing of computer programs is intimately associated with problem solving,
so considerable attention will be given to a systematic approach to problem solving. At
the end of the course many of you will find it easier to analyze and solve problems.
A thorough understanding of the contents of the course will also impréve your ability
to think logically and critically.

An important side benefit of our study will be an enhanced understanding of the
nature of language and the difficulties associated with using language in a precise,
unambiguous manner. In fact, to solve a problem using a computer requires that
language be used with precision. There is considerable truth to the statement that
“computer science is more closely associated with linguistics and communication than
with mathematics.” :

Studying computing can and should be exciting and fun. It is, however, quite
different from anything you have studied previously; if you get behind, it can be
almost impossible to catch up. It can also be a disastrous mistake to wait until the last
minute to undertake a programming assignment. A problem that is quite easy for 95%
of the class can be time consuming and difficult for you. The only safe assumption is
that the problem will take longer than you had planned.

In writing computer programs, the following somewhat contradictory attitude is
suggested: strive for perfection, but do not be upset or embarrassed by a mistake. |
When you write a program, you should try to write it so perfectly that correct answers
are obtained when the program is first run on the computer. Yet it is not the nature of
human beings to be perfectly accurate. So if you make a mistake, it is not a catas-
trophe—correct the mistake and rerun the program.

A major goal of this course is to learn to write computer programs using the
FORTRAN language. Traditionally, in such a course you would learn a small part of
the language and immediately begin programming. In contrast, we will not begin
writing FORTRAN programs until an overview of computing has been presented and

ix

x / TO THE STUDENT

some principles have been discussed. This approach appears to have the following
advantages:

1. The introductory material will aid you in organizing your thinking about
how to solve the problem for which you want to write a program. This is
helpful for everyone and is especially valuable for students with nonscien-
tific or nonmathematical backgrounds.

2. The initial study of programming principles helps you to develop and use
good programming techniques from the beginning of the course. This is inval-
uable when the programs become longer and more difficult.

3. The knowledge of programming principles gained in the first part of the
course makes a language like FORTRAN easier to learn and reduces frustra-
tion. The experimental evidence suggests strongly that students become
better programmers because of the introductory material.

CONTENTS

Chapter

1

1.1
1.2
1.3
1.4
L5
131
1.5.2
1.6
1.7
1.8

2.1
2.2
2.3
2.3.1
232
233
2.34
24
24.1
242
243
244

3.1
3.2
3.3
3.4

COMPUTERS AND COMPUTER SCIENCE

Computers in Society

The Speed of the Computer

The Decreasing Cost of Computers

The Computer as Problem Solver

High-Level View of Computer Structure

Some Components of the Central Processing Unit
The Input/Output Processor

Microcomputers and Minicomputers

The Reliability of Computers

Computer Science

COMMUNICATION, INFORMATION, AND LANGUAGE

A Model of Communication
Information

Features of Natural Languages
Complexity of Language

Redundancy

Ambiguity

Syntax, Semantics, and Logical Validity
Computer Languages

Machine and Assembly Language
High-Level Languages

The Need for Higher-Level Languages
Problem-Solving Domains—Various Higher-Level Languages

ALGORITHMS

Processes

Effective Procedures
Algorithms
Computability Theory

.

~N O A AW

11
13

17

17
19
20
20
21
22
24
24
25
26
27
27

32

35
36
37

iv / CONTENTS

Chapter

4

4.1
42
43
44
45
4.6
47
4.8
4.9

5.1

5.2

5.2.1
522
5.2.3
5.24
5.3

531
35.3.2
5.3.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

SOME PROGRAMMING CONCEPTS

Concept of a Computer Program
Display Turtles

Definition Mode

Arguments

Names and Values

Bugs and Debugging

Subprocedures

Programming Examples

Planning and Top-Down Programming

COMPLEXITY AND COMPUTER PROGRAMMING

Human Limitations

Structured Programming

The Size of Complex Programs

Testing Complex Programs

Does Structured Programming Work?
Rules for Structured Programming
Stepwise Refinement of Programs
Program Development Language (PDL)
Examples of the Use of PDL
Flowchart Technique

OVERVIEW OF FORTRAN

The Historical Development of FORTRA.
_Classification of FORTRAN Statements
Format of FORTRAN Statements
Mode of Variables

Rules for Naming Variables

Assignment Statements

Control Statements

Input/Output Stattments

Subprograms

Sample Programs

Programming Errors and Debugging

6.11.1 Errorsin Control Cards
6.11.2 Syntay Errors
6.11.3 Logic Brrors

VI G

47
48
51

58

58
59
59
60
61
61
67
67
68
74

80

80
82
82
85
87
89
90
92
95
96
111
112
113
114

Chapter

7.1

7.1.1
7.1.2
7.1.3

7.14
7.15
7.2

7.2.1
7.2.2
7.3

7.3.1
7.3.2
7.3.3
7.34
7.4

8.1
8.2
8.3
84
84.1
84.2
8.5
85.1
852
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.7
8.8

9.1
9.2
9.3

MORE INPUT/OUTPUT

Simple FORMAT Statements and Reading of Data

Integer-Mode Specification
Real-Mode Specifications

Both Integer- and Real-Mode Specifications in a FORMAT

Statement
Nonexecutability of FORMAT Statements

Summary of READ and FORMAT Statements
Simple FORMAT Statements and Qutput of Data

Carriage Control’

Output of Values

Literal Data

The Apostrophe Technique
Skip Specification
Tabulation Specification
Hollerith Specification
Printing Reports

ARITHMETIC

Assignment Statements

Hierarchy of Operations

Mixed-Mode Statements

Intrinsic Functions

Characteristics of Intrinsic Functions
Examples Using Intrinsic Functions
Programmer-Defined Functions

Arithmetic Statement Functions
Functions

Arithmetic Errors

Integer Overflow

Overflow and Underflow for Real Numbers
Addition and Subtraction of Real Numbers
Inexact Representation of Real Numbers
Rounding

Other Errors

DECISION MAKING

IF...THEN...ELSE .. .ENDIF Statement (Block IF)
Logical Variables, Expressions, and Statements

ELSEIF Statement

CONTENTS / v

121

121
121
124

126
126
127
128
129
135
137
138
140
141
142
143

161

161
164
167
170
170
173
176
178
179
183
183
185
189
190
193
196

206

206
219
231

vi / CONTENTS

Chapter

9.4
9.5
9.6

10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3

11

11.1
11.2
11.3
114
11.5
11.5.1
11.5.2
11,5.3

12

12.1
12.2
12.3
12.4
12.4.1
12.4.2
12.4.3

13

13.1
13.2
13.3
13.3.1
13.3.2
13.3.3
13.3.4

FORTRAN Logical IF Statement
FORTRAN Arithmetic IF Statement
Computed GO TO Statement

LOOPS

The Structure of Loops

DO ... ENDDO Statement

Syntax of the DO . .. ENDDO Statement
Semantics of the DQ, . . . ENDDO Statement
A Sample Program

DO Statement

ONE-DIMENSIONAL ARRAYS

An Introductory Example

Characteristics of Arrays

The DIMENSION Statement
Input/Output of One-Dimensional Arrays
Programming Examples

Frequency Distribution

Prime Numbers, Sieve of Eratosthenes
Standard Deviation

SUBROUTINES

Defining Subroutines

Using Subroutines

Subroutine Libraries

Programming Examples

Sorting

Table Lookup: Payroll Calculation
Descriptive Statistics

TWO- AND THREE-DIMENSIONAL ARRAYS

Descriptions of Two- and Three-Dimensional Arrays
Input/Output of Two- and Three-Dimensional Arrays

Programming Examples
Student and Class Averages
Frequency Distributions
Questionnaires

Eight Queens Problem

241
244
248

261

261
263
263
266
271
274

288

289
292
294
296
304
304
308
313

326

326
331
335
335
335
351
359

372

372
377
384
384
390
397
407

Chapter

14

15

16

14.1
14.2
14.3
14.4
14.5
14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6

15.1
15.1.1
15.1.2
15.2
15.2.1
15.2.2
15.2.3
15.24
15.2.5
15.3
15.3.1
15.3.2
15.4
154.1
154.2
15.5

16.1
16.2
16.3
16.4
16.5

CHARACTER MANIPULATION

Declaration of Character Variables
Input/Output of Character Variables
Assignment Statements Involving Character Variables
Comparison of Character Variables
Programming Examples

Palindromes

Sorting Alphabetic Data

Translating Morse €ode

Polish Notation

Magipulation of Strings

Finding Substrings—INDEX Function

SOME THINGS COMPUTERS CAN DO

Some Theoretical Results
Turing Machines
Self-reproduction of Computers
“Intelligent” Programs
Checkers

Chess

Geometric Analogy Problems
Learning a Concept

Natural Language

Thinking

The Imitation Game

An Experiment with an Imitation Game: PARRY
Education

The PLATO System

The LOGO Project

World Dynamics

SOCIAL ISSUES AND COMPUTING

Education

Limits to Growth
Privacy

The Cashless Society
Some Other Social Issues

Index

CONTENTS / vii

427

427
428
430
432
435
435
439
441
451
460
471

483

484
484
489
490
490
491
493
495
496
500
500
502
504
505
505
506

511

511
512
513
516
518

522

LIST OF FIGURES

Figure
1.1 Functional description of a computer S
1.2 Some levels of knowledge for hardware and software 6
1.3 Major components of a computer 6
1.4 Functional description.of a small time-sharing computer 10
1.5 A structure of computer science 13
2.1 General model of communication 18
3.1 Some flowchart symbols 33
3.2 Part of a flowchart for making French bread 34
3.3 Algorithm for determining whether or not an integer is a prime 37
4.1 CRT screen for display turtles 41
4.2 Different procedurcs for drawing a square 49
5.1 Illustration of the sequence structure 62
5.2 The IF structure 64
5.3 Use of the IF structure 65
54 The WHILE structure 65
5.5 Use of the WHILE structure 4 66
5.6 Program in flowchart form: class average for a quiz 75
5.7 Flowchart of a golf swing 76
6.1 Card layout for FORTRAN statements 83
6.2 Continuation cards 85
6.3 Payroll report 100
6.4 Manhattan Island problem 104
6.5 Prime numbers less than 1000—method 1 108
6.6 Prime numbers less than 1000—method 2 110
6.7 Steps in executing a program 112
7.1 Temperature conversion table 146
7.2 Payroll report 150
7.3 Manhattan Island problem 150
8.1 Computation of the hypotenuse of right triangles 175
8.2 Roots of the quadratic equation 176

8.3 Prime numbers less than 1000: illustration of MOD function 177

xi

xii / LIST OF FIGURES

Figure
8.4

8.5
8.6
8.7
8.8
9.4
9.2
9.3
9.4
9.5
9.6
9.7
9.8

10.1
10.2

11.1
11.2
11.3
11.4
11.5
11.6

12.1
12.2
12.3
124
12.5
12.6
12.7
12.8

13.1
13.2
133
134
13.5
13.6
13.7

Roots of the quadratic equation: illustration of arithmetic
statement functions

Simulatior of rolling dice: illustration of a user-defined function
Calculation of pi

Comparison of summation techniques

Rounding and truncation

Calculation of the roots of the quadratic equation

Scoring of bowling

Scoring of bowling: illustration of logical variables

Quiz grades: illustration of ELSEIF statement

Quiz grades: using standard IF statements

Scoring of bowling: illustration of the ELSEIF statement
Quiz grades: illustration of FORTRAN logical IF statement
Scoring of bowling: illustration of arithmetic IF staternent

Comparison of DO and WHILE structures

Three-digit numbers equal to the sum of the cubes of their
digits

Frequency distribution of grades

Frequency distribution of grades: 10-point intervals

Prime numbers: sieve of Eratosthenes

Prime numbers: sieve of Eratosthenes—use of DO statement
Calculation of standard deviation: method 1

Calculation of standard deviation: method 2

Hypothetical description of a subroutine in a subroutine library
Sorting using additional memory: WHILE statement method
Sorting using additional memory: DO statement method
Exchange method for sorting: WHILE statement method
Exchange method for sorting: DO statement method

Improved exchange method of sorting

Payroll report program using binary search

Descriptive statistics

Student and class averages

Distribution of grades by student classification
Distribution of grades by student classification and sex
Sample questionnaire

Questionnaire summary

Eight queens problem

Eight queens problem: alternative solution

180
182
188
190
195

213
220
229
235
236
239
245
249

267

14.1
14.2
143
14.4
14.5
14.6

15.1
15.2
153
15.4
15.5
15.6
15.7
15.8

LIST OF FIGURES / xiii

Palindromes

Alphabetic sorting: character variable method
Translation of Morse code

Conversion from infix to postfix Polish notation
Manipulation of strings using subprograms

Use of INDEX function

Diagram of a Turing machine

Typical problems solved by geometric analogy programs
Description of an arch

Scene in the blocks world

Abbreviated conversation in the blocks world

Arrangement for the imitation game

Partial interview with PARRY

Feedback loops of population, capital, agriculture, and pollution

438
441
449
457
472
475

484
494
497
498
499
501
503
509

LIST OF TABLES

Table

1.1
1.2

13
14

2.1
2.2

23
4.1

5.1
§2

7.1
8.1
8.2

9.1
9.2

15.1

xiv

Number of computers used in the United States

Ownership of general-purpose conventional computers within the
United States, 1976

Input/output devices

Comparison of the ENIAC and Fairchild F8 computers

Frequency of occurrence of characters of the English alphabet
Corresponding assembly- and machine-language instructions:
C=A4+B

High-level computer languages

Primitive instructions for turtle

Bugs observed in information bank programs for the New York Times
Relational operators

Carriage control indicators

Hierarchy of FORTRAN arithmetic operations
FORTRAN intrinsic functions

Definition of the logical operators
Hierarchy of logical operations

Summary of imitation game results for PARRY

26
28

41

62
72

130

165
173

223
225

504

CHAPTER

COMPUTERS AND
COMPUTER
SCIENCE

1.1

There is hardly an area of human endeavor that has not been affected by computers.
Banks use computers to print your bank statements; utility companies compute your
usage of their services and a computer prints your bill; computers are used as inventory
control in department stcres; airline personnel check your reservations using a com-
puter. They are everywhere—in business, industry, government, education, sciences,
and all present-day technology. This widespread use of computers in our society is
due primarily to the generality of tasks that computers can perform, the tremendous
speed of computer operations, and the decrease in the cost of computers.

COMPUTERS IN SOCIETY

In 1974, T heard an IBM executive refer to the rapid spread of computer
usage as ‘‘the insidious revolution.” He explained that the general population rarely
sees a computer, almost never works with a computer (computer billing being an
exception), and is unaware of the diversity of computer applications and their perva-
siveness in society. His claim was that without the public’s realization, we have become
so dependent upon computers that society could not be maintained in its present form
without them. '

Let us expand our perspective regarding computer applications by briefly
considering the history* of modern computing. The first large-scale electronic com-
puter, ENIAC, was completed in 1946 and was used by the United States Army
Ordnance Corps primarily to compute ballistic tables. In the early 1950s all comput-
ers were owned by the federal government and were used for census studies, weapons
calculations, weapons delivery and control, cryptographic applications, nuclear design,
nuclear engineering, inventory, and logistic applications. In 1954, the UNIVAC I
computer was delivered to General Electric Company for commercial use, and the

*Much of this information has been abstracted from Ruth M. Davis, “Evolution of
Computers and Computing,” Science, 195 (March 18, 1977), 1096-1102, copyright
1977 by the American Association for the Advancement of Science; and Saul Rosen,
“Electronic Computers: A Historical Survey,” Computing Surveys, 1 (March 1969),
7-36. Copyright 1969, Association for Computing Machinery, Inc., reprinted by
permission.

2 / COMPUTERS AND COMPUTER SCIENCE

TABLE 1.1 Number of computers used
in the United States

Year Number of computers
1950 ~12
1955 1,000
1960 6,000
1965 30,000
1976 220,000

TABLE 1.2 Ownership of general-purpose conventional computers within the

United States, 1976

Ownership by industrial classification

Percent of computers

Manufacturing industry

Electric machinery 3.5%
Nonelectric machinery 4.5%
Other process manufacturing 9.7%
Other manufacturing 11.0%
Transportation equipment 2.3%

Miscellaneous business
Advertising, employment, equipment, rental,
engineering services, other professional services
Banking, credit, insurance, real estate, and other financial
-institutions
Trade (wholesale and retail)
Educational institutions (schools, universities, libraries)
State and local government
Federal government
Transportation carriers
Medical and health services
Printing and publishing
Communications
Utilities (electric, gas, and sanitary services)
Other professional services
Petrochemical industry

31.0

13.3

13.4

13.1
5.7
5.7
34
2.9
2.7
2.4
1.9
1.6
1.9
1.0

Source: Ruth M. Davis, “Evolution of Computers and Computing,” Science, 195 (March 18,

1977), 1100; by permission.

computer explosion had begun. The approximate number of computers in use in the
United States at the end of various years is given in Table 1.1. In a 1967 report to
the president of the United States,* it was estimated that 80,000 computers would be
in use by the end of 1975. This estimate was far too low; improved computer tech-

*Computers in Higher Education, Report of the President’s Science Advisory Com-
mittee, The White House, Washington, D.C., February 1967. p. 58.

