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PREFACE

¥

This book is a text for a beginning course in computer science in a liberal arts environ-
ment. The organization of topics in the book is the result of the continual evolution of
a course that has been taught at Furman University since 1968. For the majority of
students at Furman, this course would be the only one that they would take in com-
puter science. Yet, many of them would later be required to write computer programs
both in courses.and in independent study in their own disciplines. It was essential,
therefore, that the students have the opportunity to become good programmers. I had
observed in previous introductory courses that many intelligent, motivated, nonscience
students had great difficulty mastering the material in the traditional programming-
oriented introductory course. I believed this problem to be a result of the teaching
method used to present the material, not the inadequacies in the abilities of the
students. :

The format of the present course crystallized in the summer of 1975 during a
six-week visit to the laboratory of Professor Seymour Papert of the Artificial Intelli-
gence Laboratory at the Massachusetts Institute of Technology. In his laboratory, I
observed average 10- and 11-year-old children writing relatively complex programs
in the computer language LOGO. This reinforced my belief that any motivated college
student should be able to learn programming. Many of the techniques used in this
book have their origin in ideas found in the work of Professor Papert.

The material in this book has been used in approximately 24 sections of the

" introductory computer science course during the period from 1975 to 1980. Although
the evidence is rather qualitative, there appears to have been a significant improvement
in the performance of students, especially nonscience majors, using the approach.
Grades have improved, more programs have been completed, and students report
having more fun than in previous years.

I am grateful to my colleagues James H. Keller and E. James Runde, who were
willing to use this book while it was still evolving and who gave me valuable feedback.
Three of my former students, C. Joseph Bridwell, James M. Coggins, and Cary A.
Coutant, helped me in many ways. I am especially grateful to Seymour Papert, who
gave me a stimulating place to work during the most crucial part of the writing.

T. RAY NANNEY
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TO THE STUDENT

There are many approaches to the study of computing. This book emphasizes the
writing of computer programs, but it also presents many other important aspects of
computing. The course is essentially nonmathematical and is designed to be useful to
both science and nonscience majors. No previous knowledge of computers, program-
ming, or other specialized skills is required.

Regardless of your future interests and activities, it will be difficult (probably
impossible) to avoid contact with computers. Consequently, in this book you will be
introduced to programming, terminology, computer languages, applications, and social
implications of computers. If you work conscientiously to master the material, at the
end of the course you should be able to use the computer to solve problems that
interest you. You should also have gained insight into many other important topics in
computing.

The writing of computer programs is intimately associated with problem solving,
so considerable attention will be given to a systematic approach to problem solving. At
the end of the course many of you will find it easier to analyze and solve problems.
A thorough understanding of the contents of the course will also impréve your ability
to think logically and critically.

An important side benefit of our study will be an enhanced understanding of the
nature of language and the difficulties associated with using language in a precise,
unambiguous manner. In fact, to solve a problem using a computer requires that
language be used with precision. There is considerable truth to the statement that
“computer science is more closely associated with linguistics and communication than
with mathematics.” :

Studying computing can and should be exciting and fun. It is, however, quite
different from anything you have studied previously; if you get behind, it can be
almost impossible to catch up. It can also be a disastrous mistake to wait until the last
minute to undertake a programming assignment. A problem that is quite easy for 95%
of the class can be time consuming and difficult for you. The only safe assumption is
that the problem will take longer than you had planned.

In writing computer programs, the following somewhat contradictory attitude is
suggested: strive for perfection, but do not be upset or embarrassed by a mistake. |
When you write a program, you should try to write it so perfectly that correct answers
are obtained when the program is first run on the computer. Yet it is not the nature of
human beings to be perfectly accurate. So if you make a mistake, it is not a catas-
trophe—correct the mistake and rerun the program.

A major goal of this course is to learn to write computer programs using the
FORTRAN language. Traditionally, in such a course you would learn a small part of
the language and immediately begin programming. In contrast, we will not begin
writing FORTRAN programs until an overview of computing has been presented and

ix



x / TO THE STUDENT

some principles have been discussed. This approach appears to have the following
advantages:

1. The introductory material will aid you in organizing your thinking about
how to solve the problem for which you want to write a program. This is
helpful for everyone and is especially valuable for students with nonscien-
tific or nonmathematical backgrounds.

2. The initial study of programming principles helps you to develop and use
good programming techniques from the beginning of the course. This is inval-
uable when the programs become longer and more difficult.

3. The knowledge of programming principles gained in the first part of the
course makes a language like FORTRAN easier to learn and reduces frustra-
tion. The experimental evidence suggests strongly that students become
better programmers because of the introductory material.
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CHAPTER

COMPUTERS AND
COMPUTER
SCIENCE

1.1

There is hardly an area of human endeavor that has not been affected by computers.
Banks use computers to print your bank statements; utility companies compute your
usage of their services and a computer prints your bill; computers are used as inventory
control in department stcres; airline personnel check your reservations using a com-
puter. They are everywhere—in business, industry, government, education, sciences,
and all present-day technology. This widespread use of computers in our society is
due primarily to the generality of tasks that computers can perform, the tremendous
speed of computer operations, and the decrease in the cost of computers.

COMPUTERS IN SOCIETY

In 1974, T heard an IBM executive refer to the rapid spread of computer
usage as ‘‘the insidious revolution.” He explained that the general population rarely
sees a computer, almost never works with a computer (computer billing being an
exception), and is unaware of the diversity of computer applications and their perva-
siveness in society. His claim was that without the public’s realization, we have become
so dependent upon computers that society could not be maintained in its present form
without them. '

Let us expand our perspective regarding computer applications by briefly
considering the history* of modern computing. The first large-scale electronic com-
puter, ENIAC, was completed in 1946 and was used by the United States Army
Ordnance Corps primarily to compute ballistic tables. In the early 1950s all comput-
ers were owned by the federal government and were used for census studies, weapons
calculations, weapons delivery and control, cryptographic applications, nuclear design,
nuclear engineering, inventory, and logistic applications. In 1954, the UNIVAC I
computer was delivered to General Electric Company for commercial use, and the

*Much of this information has been abstracted from Ruth M. Davis, “Evolution of
Computers and Computing,” Science, 195 (March 18, 1977), 1096-1102, copyright
1977 by the American Association for the Advancement of Science; and Saul Rosen,
“Electronic Computers: A Historical Survey,” Computing Surveys, 1 (March 1969),
7-36. Copyright 1969, Association for Computing Machinery, Inc., reprinted by
permission.
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TABLE 1.1  Number of computers used
in the United States

Year Number of computers
1950 ~12
1955 1,000
1960 6,000
1965 30,000
1976 220,000

TABLE 1.2 Ownership of general-purpose conventional computers within the

United States, 1976

Ownership by industrial classification

Percent of computers

Manufacturing industry

Electric machinery 3.5%
Nonelectric machinery 4.5%
Other process manufacturing 9.7%
Other manufacturing 11.0%
Transportation equipment 2.3%

Miscellaneous business
Advertising, employment, equipment, rental,
engineering services, other professional services
Banking, credit, insurance, real estate, and other financial
-institutions
Trade (wholesale and retail)
Educational institutions (schools, universities, libraries)
State and local government
Federal government
Transportation carriers
Medical and health services
Printing and publishing
Communications
Utilities (electric, gas, and sanitary services)
Other professional services
Petrochemical industry

31.0

13.3

13.4

13.1
5.7
5.7
34
2.9
2.7
2.4
1.9
1.6
1.9
1.0

Source: Ruth M. Davis, “Evolution of Computers and Computing,” Science, 195 (March 18,

1977), 1100; by permission.

computer explosion had begun. The approximate number of computers in use in the
United States at the end of various years is given in Table 1.1. In a 1967 report to
the president of the United States,* it was estimated that 80,000 computers would be
in use by the end of 1975. This estimate was far too low; improved computer tech-

*Computers in Higher Education, Report of the President’s Science Advisory Com-
mittee, The White House, Washington, D.C., February 1967. p. 58.



