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Preface

This book is intended for those who wish to obtain a reasonably
detailed working knowledge of the pertinent modern theories of
control without wading through the myriad of publications in the
field. It also is intended for those who wish to apply these theories
to concrete problems.

There is currently an impression that in order to appreciate
some of the newer control theories, one must be steeped in
certain modern branches of mathematics. This is true only to a
degree. There is, generally speaking, no substitute for a thorough
and deep mathematical grounding. Nevertheless, we feel that the
essence of these theories can be imparted without wallowing in
the jargon of the mathematics. We try to avoid lengthy chapters on
set theory, linear vector spaces, and the like. Instead, we intro-
duce most of the needed mathematics in the text proper, in order
to indicate the exact part that the mathematics plays relative to
the given problems. Thus our presentation is made in such a way
that plausibility arguments generally accompany the mathemati-
cal detail. Where called for, we present the mathematics without
undue compromise. The mathematical levels of the chapters are
however graduated, such that the more difficult concepts are
introduced in the later parts of the book.

This book is aimed at first-year graduate students and qual-
ified undergraduates. It is also intended for the large class of
working engineers who wish to keep abreast of the development in
modern control theory. The subject matter evolved from a course
given at the Bell Telephone Laboratories and later tried out at the
Newark College of Engineering, as well as at Utah State Univer-
sity in a summer course sponsored by the National Science
Foundation.

The book covers what to us are the two most important areas
of automatic control: stability and performance. It is a universal
fact that, if the loop gain is sufficiently high, a closed-loop system
can become unstable even without input. When all the system
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VIl PREFACE

components are essentially operating in their linear ranges, there
is a relatively clear understanding of the conditions for instability,
This is, however, not the case for nonlinear systems. The ex-
tent that modern theories can allow us to determine stability in
certain classes of nonlinear systems is a chief topic of the text.

Even in the case of linear systems, how to specify good per-
formance has always been a question that has nagged system de-
signers. This frequently reduces to a question of specifying a
suitable criterion of performance (in practice, a single criterion
is frequently not enough). Modern optimal control theory skirts
this issue and takes the opposite stand: given a suitable per-
formance criterion, find a control system that is best for the pur-
pose. While this is not completely satisfactory from the engineer-
ing viewpoint, it does represent an important step forward. More-
over, the problem has certain aesthetic appeal. We treat this
fascinating topic in some depth in order to accentuate the power
and pitfalls of the theories in this area, particularly in relation to
applications.

One interesting aspect of our presentation is that it clearly
shows the return to prominence of the frequency-domain tech-
niques in nonlinear system analysis. Theoretical interest in the
frequency domain was apparently eclipsed when engineers redis-
covered the so-called state-space approach to differential systems.
However, it was soon appreciated that most nonlinear systems about
which we can develop some understanding boast a linear time-
invariant part. By representing the linear part in the frequency
domain, new results often can be derived and new insights can be
gained. Thus, Popov and others obtained new stability results in
the frequency domain. Even in the area of optimal control theory,
some new and useful frequency-domain criteria have been de-
rived.

One important benefit derived from the use of the frequency
domain for linear time-invariant systems is the intuition it pro-
vides in determining the soundness of a system. We try to show
how this intuition could be used to assess the workability of the
system to be analyzed.

The prime prerequisites for digesting the contents of the text
include a course in linear control systems theory, some under-
standing of differential equations, and the theory of functions of a
complex variable. Inaddition, we assume a level of maturity equiva-
lent to that of a first-year graduate student. An understanding of
the theory of matrices, calculus of variations, and sampled-data
systems will be helpful but not essential,

Whenever possible, we attempt to share with the reader our
practical experience. To this end, in addition to many remarks in
the text proper, we have incorporated a number of examples.
They are backed up by exercises of varying degrees of difficulty.
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For lack of space, two topics are regretfully omitted. One is
discrete systems and the other is systems with uncertainties. The
first omission is not judged to be too serious, for it is possible,
with some effort, to extrapolate to the discrete case most of the
results pertaining to the continuous systems. The second omission
is more difficult to rationalize, as there is, in practice, no system
without uncertainty. However, the problems related to systems
with noise are extremely difficult to solve and generally speaking,
a clear understanding of the noise-free case is prerequisite for
appreciating problems with uncertainty. We feel that the present
choice of topics will provide the necessary grounding for handling
uncertainty later.

Even with the above omissions, it is not possible to give an
adequate coverage of all the important topics in deterministic non-
linear automatic control theory. We try to indicate other relevant
results by means of comments, footnotes, and exercises. Because
of the nature of the topics covered and because of the manner in
which the exposition is given, solving at least part of the exercises
should be considered an integral part of the reading effort. Further,
in order for the reader to participate actively in ¢‘thinking along?’’
with the authors, the text is liberally sprinkled with small chal-
lenges (‘‘why,’? ‘‘show this,’’ etc.). These challenges are designed
to test the reader’s mastery of the text material and in most cases
can be readily answered.

A Dbibliography is appended at the end of the book. All refer-
ences in the text are made by alphamerics (enclosed in brackets),
referring to specific entries in the bibliography. Our references
fall into two categories. Those which are judged to be basic for
the subject matter of a given chapter are given at the end of each
chapter with appropriate annotations. More specialized references
are cited in the footnotes. The above policy is in line with our
intention to guide the reader through the field of modern control
theory with a reasonable expenditure of time and effort. No effort
is made to make the bibliography complete.

We are indebted to a number of individuals in the course of
preparing the text. Special thanks to our colleagues G. A. Ford,
W. C. Grimmell, H. Heffes, J. M. Holtzman, S. Horing, S. H.
Kyong, Y. S. Lim, J. C, Lozier, V. O, Mowery, M. A. Murray-
Lasso, W. L. Nelson, J. A. Norton, S. Pyati, F. A. Russell, I. W,
Sandberg, J. A. Stiles, H. C. Torng, P. P, Wang, and H. S. Witsen~
hausen for their thorough comments in the course of preparation
of the manuscript. We are grateful to G.S. Axelby and J. G. Truxal
for their painstaking review of the book and for their valuable sug-
gestions. Particular credit should go to our students at Bell Tele-
phone Laboratories, Newark College of Engineering, and Utah
State University; their incisive questions and suggestions did much
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to improve the constitution of the book. Our gratitude also is due
Mrs. Gertrude Martin, who proofread our entire manuscript and
lent invaluable editorial aid; Mrs. Nancy Campbell and her group
of mathematical typists, particularly Miss Norma Lockwood, who
typed and retyped our work with distinction; and C. W. Christ and
his draftsmen, who rendered yeoman service with the illustrations.

JAY C., HSU
ANDREW U, MEYER
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identically equal to (p. 41)

approximately equal to (p. 184)

defined as (p. 21)

the absolute value of a, where a is a scalar (p. 51)
the norm of the vector x (p. 49)

the norm of the matrix A (p. 177)

the peak value of the sinusoidal function x(¢) (p. 184)
belongs to (p. 364)

(p. 93)

(p- 625)

(p. 577)

the angle tan"!(b/a) of a complex variable a + jb
(p. 207)

the average value of x(#) (p. 210)

the gradient of the function V(x), also given as grad
V(x) (p. 322)

summation (p. 21)

product (p. 31)

the real part of the complex variable z (p. 189)

the imaginary part of the complex variable z (p. 189)
the set of all values of x that belong to A (p. 547)

of ;
the matrix whose ij entry is # (p. 150)

J 9H
the vector whose ith component is . (p. 600)
13

the smaller of the two quantities ¢ and b (p. 52)
the largest value of x(¢) in the range ¢, <t<¢,

(p. 450)

the unit step input function applied at ¢t = 0 (p. 282)
the unit impulse function applied at ¢ = 0 (p. 58)
designation of the start and finish of theorems,
lemmas, examples and definitions (p. 19)

*The page at which the symbol first appears is given in parentheses.
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