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PREFACE

TaE methods described in this volume have been developed
and tried out in practice during more than ten years in the
Mathematical Laboratory at the Imperial College of Science
and Technology. Although a great deal of it is here pub-
 lished for the first time, much of it has formed part of the
systematic instruction of the many hundreds of students.
who have passed through the Department of Mathematics
of that college during these years.

This, the first voluime, concerns itself only with the actual
solution of ordinary differential equations and the numerioal
examination of many of their properties. The determina-
tion of Characteristic Numbers (Higenwerte) and the in-
“vestigation of Orthogonal Properties in general are, how-
ever, omitted. These will be included in Vol. II, since such
properties are primarily of importance in connection with
the practical solution of partial differential equations. It
is for this reason also that po attempt has been made to
eXamine in detail the special properties of well-known
equations (Legendre, Emden, Mathiéu, etc.), except where
these have illustrated general methods applicable to classes
of equations of similar types.-

Although frequent use has been made of Finite Difference
methods, little knowledge of that subject is here required,
and as far as possibie such use has been accompanied by
full explanations of the meaning, and sometimes of the
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derivation of the formule. The authors desire to express

their appreciation of the typing assistance so generously

given by Miss B. E. Taylor and the help in sketching some °

of the integral curves by Mr, A. W. King.
August, 1934.
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CHAPTER I

GRAPHICAL INTEGRATION OF DIFFERENTIAL
: EQUATIONS

1. General remaris. .
%. Propositions relsting to ths integration of ﬁy = fl=, y).

3. The iscclinals of a differential aquation of the first order.

%.1. Singuler Yoint»s on the curve f(z, y) = Q.

8.Z. The envelops locus of flz, ¥, ¢) = C.

8.8. General discussion of the integrai curves and isoclinals of
& differentis! equation of the fist order.

3.4. Application to the practical problem of integration.

8.8, Approlﬁxeations at points to the integral curvse and
1soclinals.

DxscripTive Proorss ror Finst ORDER BQUATIONS

1. Geners! remmarks.

If z is an independent variable, y & dspendent variable,
g, g-:é'{, SR ish %y, the first » differentisl coefficients of y with
respect to @, then a differential equation is a relation
betwesn all or some of the numbers

a; ds
%, 9, d—%’ Ehan ZEy’
in which one diﬁerential coefficient at least cccurs.
Thus ' % = 2% 4 ¢*

-z B iy r1-0

are examples of differential equations.

The order of such an equation is defined as ths order of the
highest differential coefficient present in it. The two cases
cited above, for example, are of orders one and fwo respectively.
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By a solution of the differential.equation is here to be
understood, & function of x denoted y, such that if the
differential coefficients %, g—}z, ete., are found and the values
inserted in the differential equation, the latter (now a
function of x alone) is identically satisfied. /

For example, in the second equation written above

(I—x”)%——z%-{-y—{-l:(),

a solution is ¥ = & — 1, since

and the equation becomes, when these values are insei‘te’d,
0 —zxXx1l4+2—14+1=0,

In the present chapter it is proposed to regard the func-
tion y, given, not as an explicit expression written in terms
of powers of z, or literal functions of z such as sin z or log x,
but by a graph in the plane of the two rectangular axes
OX and OY. Remembering that % from this point of view
is the slope of the tangent to the curve at any peint (z, y),
we may suppose that from such a curve of y against z,

ariother curve of 3’% against 2 may be drawn.

What is the most accurate and convenient method of
determining such a derived graph need not for the moment
be considered. It will be dealt with in a later chapter.
It suffices merely here to assert that if the original curve is

everywhere continuous, then the curve for % can certainly

be found. Similarly, the curves répresenting %ﬁ, %’g, ete.,

may also be derived and plotted to the same base z.
On this view of the functional form of y, it can now be
- gtated that a solution of the differential equation is found
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for a range of values of 2 when a graph has been obtained for

that range, such that when its ordinate is taken to represent
2

%, and all the necessary denved curves for Zy 3@2 .. .are

obtained, and these values are inserted in the differential

equation, the latter is zero at each value of z in the range.

A few matters immediately call for comment. In the
first place, be it noted that the final verification of the
solution is not, as in the previous case, that terms in the
final form of the differential equation are explicit expressions
in «, which reduce to zero in the aggregate, but are mere
numbers which when collected together sum up to zero.
The verification, therefore, in this case is of an arithmetric
rather-than of an algebraic nature.

In the second place, and as a consequence, another
distinction is apparent between the two types of solution in
their verification. In the case of the graphical form of the
solution it is evident that a graph can at best represent a
function to a restricted degree of accuracy. The limitation
arises in the last resort from the severely practical difficulty
of placing two points on a chart, closer together than a
certain minimum distance. This implies a degree of
indefiniteness in the graphical solution which may con-
veniently be represented as & margin of error in that function.
At least a corresponding margin of error will be present in

each of the graphs for 2z’ Z 5 derived from this necessarily

approximate form for y. In point of fact the errors in the
derived curves may be much greater, the magnitude depend-
ing especially on the particular method that is adopted in
estimating the values of the differential coefficients. This
will be discussed later. For the moment it suffices to remark
that when these values of y and its differential coefficients
are inserted in the equation the terms may not sum up to
zero at each value of z, but reduce to a number which is
small in comparison with the individual terms that go to
make up the sum.

These considerations suggest that, for precision, a modifica-



4 - FRAPHICAL INTEGRATION OF

tion in our definition of a solution of the differentisl equation
mugt be made.

-Suppose ¥ is graphed as a function of x and suppose, at
sach wvalue of z, a small possfble margin of error « (x) is
attached. This will specify in the # — y plane not really
an individual curve but s region within which the curve
lies. If then within this narrow region there exists a curve

guch that when the values of ¥ and %, %’ ete. derived

from it are inserted in the equation, the latter is accurately
satisfied, we shall say that the original graph about which
the region was defined is a solution of the differential
equation, with a margin of error ¢ (z).

On this definition it is evident that in practice three
things are required :

(i} ‘A method of determining the approximate solution
as a graph of y.
(ii} An estimate of the margin of error ¢ (x) at eaoh value
of z.
(iii) An assurance that somewhere within the band defined
by ¥ and « (z) an acourate solution of the differential
equation exists.

The first step in the determination of the solution of the
differential squation is, if possible, to find a rough approxima-
tion to its solution and some idea of the accuracy of that
approximation. This will in general be carried out by
finding upper and lower limits within which the solution
must lie. Whether any further examination is necessary

~will, of course, depend on the accuracy to which the solution
is desired. The second step, therefore, consiats in refining
this approximate estimate, and for this purpose, as for the
initial step itself, many methods are available,. but the
particular method that should be chosen will depend on
certain factors. In the first place, the range of the inde-
pendent variable for which the solution is required will
affect the selection; but even more than this, the degree
of accuracy with wlnch the solution is desired over that
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range will exersise a predominating influence in the choice.
In addition tc this thers are such factors as the labour
involved in the sctual comyputation by any method, whether
a computing machixe is or is not available, and whether the
method iz suitabie for mechanical computation; and finally,
the number of intermediate positions along the range of
the independent variable for which the solution is desired.
All these factors, snd others more intimaiely connected
with the exact nature of the differential equstion iteelf,
enter into the choics. ;

As the subject develops and alternative methods are
offered for the determination of a solution these points
will require to be specially noted. We proceed, therefore,
to the first step, to determine a rough approximation to the
solution and upper and lower bounds to its accuracy. For
this purpose it is simpler te bear in mind a geometrical or &
graphical interpretation of the variables and of the relation-
ship involved in the equation.

2. Propositione relating to the integration of % == f(2, ¥).

If (x, ¥) be the co-ordinates of a point lying on g curve in
a plane, then » —Eg—% represents the slope of the tangent at

{z, y) to that curve.
A differential equation of the first order

o =flig) e laanidnia pet £R)

attaches a certsin direction to every point in the plane.

If a family of curves can be found such that at every
point of every member, condition (1) is satisfied, then
that family is called the integrel family of curves of the
differential equation. '

Since a relation of the form

$,y,p)=0. . . . . (2
can be reduced to a set of equations of type (1) merely by



6 GRAPHICAL INTEGRATION OF

solving algebraically for p in (2), we may refer to the integral
curves of (2) in the same sense.

If equation (2) is algebraic in p of order », then a.t any
point (z, y) there are n values of the slope, and n branches
of the integral curves pass through that point. No two
integral curves formed by pursuing corresponding branches
across the field can meet. For such branches correspond
because they are solutions of the same differential equation
(1), and p is then uniquely determined at each point. It
follows that through a given point there can be one and only
one solution of the equation (1).

Some useful consequences follow immediately from these

_considerations.
© (i) In the two equations

= F(z,y) and g—; = F{xr,z)

dy
dx
Af yg =2, at x = x,, then y=2, since the solutions are
unique. _ B
Hence if at 2 = x,, y, > 2, then everywhere y > z,
since they cannot cross.
(ii) In the equations

dy ‘ dz
L =Py and T =2NF(z,2)

if A>1 and y,=2, at =2, then z> y from there
onwards.
The two solutions have only one point in common, viz. the
starting-point = &y, ¥y = ¥y, 2 = 2,
© (iii) In the equations

éldiz/ = F(z,y) and ‘E = ¢(z) . F(z, 2)

< where
: d(z) >A>1

then if y and z start at a common point, from there onwards
z > y and they never meet again.
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(iv) Throughout a region of the (z, y) plane which includes
a point through which the solution of

dy
L=y
is required, if :

Mz, y) > f(=, y) > m(z, y),
then the required solution lies intermediately between that of

dy _
a_x =M (x: y)
' d
and dlal: = m(x; y).
Enmple 1.—The solutlon of

= (z + ye ™)

which passes through (0, 0) and lies in the first quadrant,
between y = 0 and y = 0-5 is intermediate between that of

d
Yty
and Zg = x + ye"5,
The solutions of these linear equations are respectively
y=—1—x-14¢€ ‘
and y = e[er™" — 1] — xe®S

At the limits of the range, viz. at * = 0-5, these, therefore,
provide as upper and lower limits to the value of y, the
two numbers 0-1487 and 0-1390, whose mean, 0-1438 is
certainly less than 3-5 per cent. in error.

Example 2.- )

o S S ¥
dz = 2* + a® 2 a2(1 * x—2>
for the range a to Aa lies between
i , 42 @y _ (1.
which are both soluble equations, since

a? A2
2? + a? 3 T4+

§—m<
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(v) In the two equations

d d ’
L =Fizy) and T =F2+2

where A > 0, if at x =2, ¥ = Yo, 2 =%, then z >y and
always remains so, since where they would meet again g

: dy
would be again greater than ~=.

(vi) In the equation

d:
2= F,y) + H=)
if M > flz) >m >0,
then the solution of the equation lies between that of

i %=F(x,y)+m and %-—-F(x,y)-'l-ﬂl-

Example 3.—In the equation

%“m*+a""m’+a’+x’+a’

the solution lies between those of

dy ki d, 2

E=mra wd Z=1+515
taking the range of 2 to be 0 10 «. :

The simple methods just outlined may suffice to indicate

roughly the general trend of any particular solution, although
they are not necessarily very useful in practice. This arises
from the fact that in effect we have made the determination
of the upper and lower bounds of thé solution dependent on
the solution of two other equations generally of simpler
type. Where these are themselves not directly capable
of solution the process does not assist us much, if at all.
We turn, therefore, to a consideration of yet another method, .
in this case of a graphical nature, which will provide us not
only with a knowledge, detailed up to a certain degree, of
any one particular solution of the equation, but with a
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picture of the genersl trend of all the solutions of the
equation. For many purposes it is precisely this general
knowledge that is required rather than detailed information
about any one special solution passing through a particular

point.

3. lsoclinels of o differential equation of the first order. _

It is necessary that the conclusions, which will presently -
be drawn in the genmersl discussion of the equation
é(x, y, p) = ¢ from a geometrical standpoint, should be.
expressed in consise mathemetical form, and for this purpose’
the two following paragraphs are required.

1. Singular poinis on the curve f{z, ¥) = 0.
Consider the e cnf(:c, ) =s G,
If thie be solved for yin terms of @ and this valus of ¥ be subatituted
in tha egquation
26 - f(" y)a

u will vanish identically. It followa, therefors, that the aonvmm"
ofi'chmt.hmgard&ocwﬂlukov-mnh

% i ahgas 450 (8
or; H\:iY Io +j- g = 0’ ~
i.e. T Y ) AR R ey ¢ V. |

fl;z: any curve f(z, ¥} =0, (3.1) in generel determines the value
o

Dxﬁemntmting(S)agam
: St YV H LS,y =0, . . (&)
Now (3.1) fails to determine y’ when f, = f, = 0} in which case
Jut ¥ ¥ =0 . . . (41)

and this equation in general determines the two poasxble slopes at
s double point.
In these circumstances there are three equations

fo=
_f-o} s g e
f(”’ys-o :
to be satisfied, and since two equations only are n to

determine x and y, it is clear ﬂnt any points which satisfy equaulom
(B) are necessarily singular to the curve.
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3.2, The Envelope locus of f(z, y, ¢) = 0.

If f{z, y, ¢) = 0 represent a system of curves obtained by g"vmg
real values to ¢, then

f(xo Y, c)==0
of } )

2 =0

oc

repr.sents the envelope of the system f(z, 4, ¢) = 0.
Consider the mwrsectlons of the curves

Ji, y, ¢) = 0 and f(z, y, ¢ + &) = 0. :
0 = flz. 9, ¢ + 80) = fiz, 3, ©) + g2 L[, 9, ©)] - o + NBeP.

where 2 is finite in general.
Thus when §c¢ tends to zero

)
s 'f(xr y,¢) =0
It follows that e(}luatxons (8) determine the locus of the ultimate
mtersl::rhons of each member of the system with the neighbouring
member

member of the system f(z, y, ¢) = 0 touches this locus.
For slope at a point (z,, ;) on ¢, is given by -

Jelzys Y15 €3) + f,(”u Yis °1)% =0 S ST}
The slope at the same point on the locus (8) is determined from
‘ d de
Jol®1 Y1 €4) + f,(zn Y15 1) a“z + fo®1 Y1 cl)d—;; = 0. ¢(8)
But from equations (6), f, = 0.

Hence (7) and (8) determine identical values for Z——g

3.3. General discussion of the integral curves and isoclinals
of a differential equation of the first order. |

A first ordell' differential equation

¢(ws !I» P) =0 2 2 i (9)
besides defining an integral system also determmes a system
of curves
SR e RE=0" 7 7 s ()

This may be regarded as a system which includes the loci

of successwe points on the integral curves for which ;li



