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INTRODUCTION

In 1975 a new venture in education by and for the chemical engineering community was
initiated. Prepared by the CACHE Corporation (Computer Aids for Chemical Engineering
Education) and under the sponsorship of the National Science Foundation (Grant HES 75-
03911), a series of small self-study fundamental concept modules for various areas of
chemical engineering were commissioned, Chemical Engineering Modular Instruction,
CHEML.

It has been found in recent studies that modular study is more effective than traditional
instruction in both university and continuing education settings. This is due in large mea-
sure to the discrete focus of each module, which allows the student to tailor the speed and
order of his or her study . In addition, since the modules have different authors, each writing
in his or her area of special expertise, they can be produced more quickly, and students may
be asured of timely information. Finally, these modules have been tested in the classroom
prior to their publication.

The educational effect of modular study is to reduce, in general, the number of hours
required to teach a given subject; it is expected that the decreased time and expense in-
volved in engineering education, when aided by modular instruction, will attract a larger
number of students to engineering, including those who have not traditionally chosen engi-
neering. For the practicing engineer, the modules are intended to enhance or broaden the
skills he or she has already acquired, and to make available new fields of expertise.

The modules were designed with a variety of applications in mind. They may be pursued
in a number of contexts: as outside study, special projects, entire university courses (credit
or non-credit), review courses, or correspondence courses; and they may be studied in a
variety of modes: as supplements to course work, as independent study, in continuing
education programs, and in the traditional student/teacher mode.

A module was defined as a self-contained set of learning materials tat covers one or more
topics. It should be sufficiently detailed that an outside evaluation could identify its educa-
tional objectives and determine a student’s achieV€ment of these objectives. A module
should have the educational equivalent of a gne’to three hour lecture.

The CHEMI Project Staff included:

E. J. Henley, University of Houston, Director
W. Heenan, Texas A & I University, Assistant Director
Steering Committee:
L. B. Evans, Massachusetts Institute of Technology
G. J. Powers, Carnegie-Mellon University
E. J. Henley, University of Houston
D. M. Himmelblau, University of Texas at Austin
D. A. Mellichamp, University of California at Santa Barbara
R. E. C. Weaver, Tulane University
Editors:
Process Control: T. F. Edgar, University of Texas at Austin
Stagewise and Mass Transfer Operations: E. J. Henley, University of
Houston, J. M. Calo, Brown University
Transport: R. J. Gordon, University of Flordia
Thermodynamics: B. M. Goodwin, Northeastern University
Kinetics: B. L. Crynes, Oklahoma State University
H. S. Fogler, University of Michigan
Material and Energy Balances: D. M. Himmelblau, University of Texas
at Austin
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Curriculum Analysis: E. J. Henley, University of Houston
The second phase of the project, designed to fill in gaps as well as develop new modules,
is under the direction of D. M. Himmelblau, University of Texas at Austin.
Steering Committee:
B. Carnahan, University of Michigan
D. E. Griffith, Oklahoma State University
L. Harrisberger, University of Alabama
D. M. Himmelblau, University of Texas at Austin
V. Slamecka, Georgia Institute of Technology
R. Tinker, Technology Education Research Center
Editors (* indicates a new task force head):
Process Control: T. F. Edgar, University of Texas at Austin
Stagewise and Mass Transfer Operations: J. M. Calo, Brown University
E. J. Henley, University of Houston
Transport: R. J. Gordon, University of Florida
Thermodynamics: G. A. Mansoori*, University of Ilinois at Chicago Circle
Kinetics: B. L. Crynes, Oklahoma State University
H. S. Fogler, University of Michigan
Material and Energy Balances: E. H. Snider*, University of Tulsa
Design of Equipment: J. R. Beckman, Arizona State University
Volume 1 of each series will appear in 1980; Volume 2 in 1981; and so forth. A tentative
outline of all volumes to be produced in this series follows:

SERIES C: TRANSPORT

Volume 1. Momentum Transport and Fluid Flow

Cl.1 Simplified One-Dimensional Momentum Transport Problems
€12 Friction Factor
€l1.3 Applications of the Steady-State Mechanical Energy Balance

G. Patterson

R.

D.
Cl.4 Flow Meters Ww.

W.

R.

K.

J. Gordon and N. H. Chen

W. Hubbard

F. Beckwith

J. Hatcher, Jr.

A. Greenkorn and D. P. Kessler

€1.5 Packed Beds and Fluidization
©1.6 Multi-Phase Flow

Volume 2. Momentum Transport, Viscoelasticity and Turbulenc,

€2.1 Non-Newtonian Flow I—Characterization of Fluid Behavior D. V. Boger and A. L. Halmos
€2.2 Non-Newtonian Flow II—Fully Developed Tube Flow D. V. Boger and A. L. Halmos
€23 Viscoelastic Fluid Flow Phenomena D. V. Boger and R. I. Tanner
C2.4 Turbulence: General Aspects Illustrated by Channel or Pipe Flow N. S. Berman

€25 Turbulent Drag Reduction G. K. Patterson

Volume 3. Equation of Motion, Boundary Layer Theory and Measurement Techniques

C3.1 Measurements of Local Fluid Velocities N. S. Berman and H. Usui
€32 Equation of Motion G. K. Patterson

C3.3 Navier Stokes Equation for Steady One-Directional Flow G. C. April

C34 Boundary Layer Theory R. J. Gordon

C3:5 Boundary Layer Theory: Approximate Solution Techniques R. L. Cerro

C3.6 Diffusivity Measurement Techniques in Liquids V. L. Vilker

Volume 4. Mathematical Techniques and Energy Transport

C4.1 Mathematical Techniques I—Separation of Variables R. S. Subramanian

C4.2 Mathematical Techniques II—Combination of Variables R. S. Subramanian

C4.3 Elementary Steady-State Heat Conduction W. J. Hatcher
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C4.4 Natural Convection R. D. Noble

C4.5  Unsteady-State Heat Conduction K. I. Hayakawa
C4.6  Differential Energy Balance R. D. Noble
Volume 5. Mass Transport

Cs5.1 Unsteady-State Diffusion S. Uchida

Cy2 Mass Transfer in Laminar Flow S. H. Ibrahim
CS3 Turbulent Mass Transfer S. H. Ibrahim
Volume 6. Transport Phenomena— Special Topics

C6.1 Bubble Dynamics: An Illustration of Dynamically Coupled Rate Processes T. G. Theofanous
C6.2 Miscible Dispersion R. S. Subramanian
C6.3 Biomedical Examples of Transport Phenomena I—Coupled Diffusion Effects R. H. Notter

C6.4 Biomedical Examples of Transport Phenomena II—Facilitated Diffusion R. H. Notter

C6.5 Mass Transfer in Heterogeneous Media P. Stroeve

C6.6 Advancing Front Theory R. Srinivasan and P. Stroeve

Publication and dissemination of these modules is under the direction of Harold I. Abramson, Staff Director, Educational
Activities, AIChE. Technical Editor is Lori S. Roth. Chemical engineers in industry or academia who are interested in
submitting modules for publication should direct them to H. I. Abramson, Staff Director, Educational Activities, American
Institute of Chemical Engineers, 345 East 47th Street, New York, N.Y. 10017.
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Module C6.1

Bubble Dynamics: An lllustration of
Dynamically Coupled Rate Processes
T. G. Theofanous

University of California
Santa Barbara, CA

OBJECTIVES

At the completion of this module, the student

should be able to:

1. Estimate vapor bubble growth rates in uni-
formly superheated liquids.

2. Identify the physical mechanism(s) that con-
trol the bubble growth process and those that,
although present, can be neglected for the
purposes of the calculation, for any given
particular case of interest.

3. Evaluate the (heterogeneous and homogene-
ous) bubble nucleation characteristics.

PREREQUISITE MATHEMATICAL SKILLS
1. Elementary differential equations.

PREREQUISITE ENGINEERING AND
SCIENCE SKILLS

1. Equations of change.

2. Elementary thermodynamics of two-phase
media.

3. Transient conduction.

4. Dimensional analysis.

INTRODUCTION

The primary purpose of this unit is to discuss the
methodology for the study of dynamically coupled trans-
port (rate) processes. The subject of ‘‘Bubble Dynamics’’
was selected as the vehicle for this study, not only be-
cause it provides a uniquely well suited area of applica-
tion, but also because it will provide the opportunity to
establish the fundamentals underlying the behavior of a
very large number of naturally occurring and technologi-
cally important processes, not the least of which is the
process of boiling.

In the majority of problems, the heat and mass trans-
port rates depend upon the fluid mechanics, however,
this dependence has been largely one-sided. That is, the
problem could be solved in sequence, starting with the
determination of the flow field and proceeding with the
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solution for the heat and mass transfer rates. An impor-
tant exception readers may already be familiar with is in
the area of natural (free) convection. Here, temperature
and concentration gradients give rise to body forces
(buoyancy) that produce fluid motion. This motion, in
turn, interacts with and affects the development of those
-gradients, so that a simultaneous solution (coupling) for
both processes becomes necessary.

When the degree of coupling is a function of time, one
may talk about dynamically coupled processes. Many ex-
amples of such processes may be found in the field of
gas dynamics. The area of bubble dynamics, which is
perhaps closer to the interests and practice of chemical
engineering, provides numerous opportunities to investi-
gate such processes. For the purposes of this presenta-
tion, the problem of vapor bubble growth has been se-
lected for consideration. In very simple terms, the key
interaction (coupling) here is between the liquid inertia,
which must be ‘overcome’’ to initiate and develop the
liquid motion, and the thermal conduction resistance in
the liquid surrounding the vapor bubble, which must be
overcome in order to maintain the heat supply equivalent
to the latent heat requirements for the phase-change proc-
ess that accompanies growth.

Having to deal with highly transient problems, it is
reasonable to begin with a detailed consideration of the
initial conditions. Thus, one learns about nucleation,
which marks the inception of the bubble growth process.
Then the module will continue with the physical interpre-
tation of the individual transport processes that participate
in the bubble growth phenomena and their mathematical
formulation, emphasizing the simplifying assumptions in-
corporated in this formulation. There will then be a dis-
cussion on the methods and the nature of the solutions,
and to conclude, a brief presentation of some more gen-
eral situations of practical interest.

VAPOR BUBBLE NUCLEATION

Consider carrying out the following very simple exper-
iment. In a clean test tube place a small quantity of
Freon-11 and cover it with a thin layer of glycerol. Se-
cure the tube inside a vacuum flask, such as those used
for example by chemists for filtration. Replace the filter
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assemblies with a stopcock equipped with a vacuum
gauge (or even better a mercury manometer) and slowly
apply vacuum through a respirator. You will observe that
soon after the application of vacuum the tube contents
“‘boil-off.”’ It is very likely that during your first try, this
“‘boil-off”’ process will be slow enough to see the nuclea-
tion of vapor bubble(s), which as they grow expell at
least a portion of the tube contents and thus destroy the
flask vacuum. Now repeat the experiment with a very
carefully cleaned (cleaning solution: sodium chromate +
concentrated sulphuric acid) and dried (distilled water,
alcohol, and acetone in this order) test tube. You will ob-
serve a longer delay time and such a violent ‘boil-off’’
that although you will be able to Aear, you will not be
able to see the expulsion process itself.

All this behavior can be understood with the help of
Figure 1. The initial state of the fluid in the test tube is
indicated by point O, which for Freon-11 at room tem-
perature and atmospheric pressure is slightly to the left of
the vapor pressure curve indicated by the solid line (i.e.,
Freon-11 boils at 90°F). Since the liquid would have to
be heated to its boiling point, 7*(Py), in order to
achieve saturation, the state O is undersaturated (or sub-
cooled) by the amount 7%(Py) — Tp. As the pressure
drops, the fluid state follows the trajectory OAB. Satura-
tion is achieved at A. For pressures below the level P,
the liquid is found in a metastable state; such states can
only be achieved in the absence of any liquid-vapor inter-
faces which can sustain vaporization. At a system pres-
sure Ppg, the system is ‘‘superheated’’ by the amount T
— T*(Pg), where T*(Pp) is the saturation temperature
of the liquid at pressure Pz. When an opportunity for va-
porization appears (nucleation event) somewhere inside
the test tube, the initial rapid liquid vaporization is sup-
plying vapor at a pressure P4. Since the flask pressure is
Pp, the resulting pressure differential will set the contents
of the tube in motion. It is clear that this pressure driving

*
T*(Pp b 3
Figure 1. Metastable O liquid states in relation to its vapor pres-
sure curve. Asteriks indicate saturation values, i.e., py =

p*¥(T,).

TH(2,) T

2

e

force increases with the amount of superheat present and
thus, one can see qualitatively the reason for the violence
of the event observed experimentally. For a closed sys-
tem, like our flask, the path BC will be followed sponta-
neously, terminating at an intermediate state C on the
saturation line. Next, let us consider the origin and char-
acteristics of a ‘‘nucleation event.”’

For a system with no free, macroscopic liquid-vapor
interfaces (like our system where the free surface of the
Freon was ‘‘sealed’’ with a layer of glycerol, which has
a much lower vapor pressure), nucleation must initiate
from microscopic vapor or gas cavities. Such cavities are
present on solid surfaces and may also form spontane-
ously in the liquid. The crucial aspect concerning the
action of a particular cavity as a nucleation site is its
size. The size, (radius R), determines the magnitude of
the surface tension force, 20/R, which is available to bal-
ance any difference between the cavity internal pressure
(P;) and ambient liquid pressure Pg. The equilibrium
condition may be used to define the critical radius R.,.

e - (1)
o ek

It is easy to see that for cavities larger than the critical
size, the force imbalance favors growth, and for cavities
smaller than the critical size, the force imbalance favors
collapse. Thus, any cavities that contain only vapor and
are smaller than the critical size will vanish. However,
on solid surfaces, especially in the presence, as is always
the case, of small amounts of noncondensible gases, va-
por and/or gas entrapment in microscopic cavities (sur-
face imperfections) can occur in a fashion that leads to a
spectrum of stable, microscopic nuclei. If the radius of
curvature of the largest such nuclei is R,,, the maximum
possible superheat would correspond to a pressure differ-
ence AP,

e _20

AP R ()

For the example of our experiment, if cavity gas pressure
is neglected, the minimum possible pressure level Pg
would be given by:

Py=Pi— 2% = pr(Tp)-22 3)
B i Rm ( o Rm

Since there is no direct way to control R,, the nucleation
events are somewhat erratic. In a general way, the better
the cleaning technique, the smaller is the size of R,, and
thus, the larger the vacuum (superheat) achieved in the
experiment. Further increases in superheat can be
achieved by pressurizing the system, prior to the applica-
tion of vacuum. This process is effective by forcing the
cavities to a smaller size, thus decreasing R,,.

The mode of nucleation originating at pre-existing cav-
ities is the most common one and is called heterogeneous
nucleation. In most engineering systems there are enough
dissolved gases and other impurities, and surface imper-
fections, that only very small superheats (a few degrees)
become possible. For certain special laboratory condi-
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tions and solid/liquid pairs with good wetting properties,
heterogeneous nucleation can sustain hundreds of degrees
of superheat (for example, for the liquid sodium stainless
steel pair, superheats up to 800°F have been measured).
However, as long as the metastable liquid has any inter-
faces with solid surfaces, no matter what precautions
have been taken, heterogeneous nucleation cannot be
eliminated in practice. This type of nucleation can only
be avoided by ‘‘sealing’’ the metastable liquid with an-
other liquid of very low vapor pressure. For example,
this can be accomplished by suspending (i.e., by mean of
sound waves) a drop of the volatile liquid in a heated oil
bath. Such a drop can be superheated well above the het-
erogeneous nucleation levels. In fact, it will always reach
the same, predictable, level of superheat, known as the
limit of superheat, and it will literally explode upon
reaching this limit. This event is called spontaneous nu-
cleation (or homogeneous nucleation) and it is due to
thermal fluctuations of molecules in the liquid state,
which can randomly achieve configurations such as to
produce locally microscopic vapor cavities slightly larger
than the *‘critical size.”” The rate of formation of such
critical cavities, R, may be calculated from the molecu-
lar thermodynamics of the liquid state and is given by:

lowa?
J=A exp —W

where: A = 103 cm 3 s ! and is known as the fre-
quency factor, K is the Boltzman’s constant, T, is the
temperature of the liquid and AP = P*(R) — Pjis
equivalent of the superheat present. This equation, due to
its strong dependence on liquid temperature (notice that
AP also depends strongly on T), has the character of a
threshold equation. That is, up to the threshold tempera-
ture (7,s), the nucleation rate is extremely small, i.e., no
nucleation is observed experimentally. When the temper-
ature T, is reached, however, and within a very small
temperature interval, the nucleation rate increases dra-
matically, so as to clearly define a limit of superheat. At
this limit, the rate of nuclei formation is so high that the
drop will literally explode, i.e., the pressurization due to
boiling is so great that shock waves are observed.

)

MATHEMATICAL FORMULATION

Attempting to develop simple mathematical solutions
and through them, a first-order understanding of the bub-
ble growth problem, one must identify for study the key
physical phenomena that affect bubble growth in a ge-
neric fashion. A consideration of qualitative physical be-
havior may be helpful in that regard.

A vapor-filled critical cavity is depicted in Figure 2a.
The cavity is immersed in a superheated liquid with tem-
perature T, and the system pressure is Po. The vapor
pressure in the cavity corresponds to the saturation pres-
sure at the liquid temperature and since this pressure is
balanced exactly by the surface tension force and the am-
bient pressure, there is no motion (bubble wall velocity is
zero, R = 0). A slight decrease in cavity size will yield
monotonic cavity collapse, while a slight increase will
yield monotonic growth. Hence the system is at unstable
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equilibrium. Consider the case of growth. As R in-
creases, the surface tension force decreases and the pres-
sure imbalance across the liquid body increases, leading
to its acceleration. On the other hand, bubble growth
results in an expansion of its vapor contents and unless
an equivalent amount of new vapor is supplied, the bub-
ble internal pressure will decrease. Liquid vaporization,
at the bubble wall, can provide the source for this vapor,
however, the rate of vapor production is limited by the
rate at which heat can be conducted to the bubble wall in
order to satisfy the latent heat requirements. This situa-
tion is depicted in Figure 2b. The bubble wall velocity is
positive (growth), the bubble wall temperature 7; and va-
por pressure P, have dropped from their initial values
(cooling due to vaporization) and thus a driving force 7
— T, for heat transport has developed. The growth rate
is determined by the pressure differential P, — P,
which is in turn determined by the opposing effects of
bubble expansion and heat transport as previously dis-
cussed.

In real situations, the detailed manifestation of this
physical phenomena can be quite complex. For example,
the liquid phase temperatures may exhibit great temporal
and spatial variations so that various portions of the bub-

#ble wall experience different temperature driving forces,
possibly changing with time. An important example of
this behavior is subcooled nucleate boiling, where as the
bubble grows from the superheated wall region, it en-
counters subcooled liquid masses upon which condensa-
tion can take place. Thus portions of bubble wall could
be evaporating while other portions could be condensing.
This behavior, taking place at the microscopic level, could
be important even for the nucleation process itself. Other
difficulties exist. Bubbles growing rapidly on solid walls
do not have time to rise, hence they obtain a hemispheri-
cal shape. Because of the non-slip condition on the wall
as the bubble grows, a thin liquid film known as the mi-
crolayer is left behind (see Figure 3). This film can va-
porize through its own superheat and by additional heat-
ing from the wall. Buoyancy forces also can play a role
in promoting rise which affects bubble shape and mixing,
complicating even further heat transport considerations.
A large amount of literature is available for these and
other problems.

A first step towards understanding the key physical in-
teractions discussed in the two previous paragraph is to

GROWTH

UNSTABLE EQUILIBRIUM (b)
¥ =
Pun
Pe
—Te
t=0 R=0 t>0 R >0
Pp =P, Er> P
4 20 20
P, p‘:+R o e A Ron
P, = P*(1.) P, < PX(T,)

Figure 2. Qualitative illustration of vapor bubble growth from a
cavity of critical size.
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Figure 3. lllustration of microlayer geometry.

consider the problem of growth of a simple spherical va-
por cavity, from its critical size, in a uniformly super-
heated incompressible liquid. Let us make the following
not-so-restrictive assumptions:

a) The bubble remains stationary with respect to the
liquid, which is of infinite extent. In fact, because
of the spherical divergence, the liquid velocities de-
crease rapidly away from the bubble so that any
walls away by a few bubble diameters are not felt,
i.e., a finite system behaves as if it was infinite.

b) The bubble remains spherical throughout the
growth period. This is basically a consequence of
the previous assumption.

¢) The vapor in the bubble remains saturated at all
times and it is in equilibrium with the bubble wall.
In most cases of interest this is the case.

d) Liquid viscosity is negligible. This is a good as-
sumption except for some very high viscosity lig-
uids.

e) The vapor-to-liquid density ratio is much smaller
than unity. This is true except near the thermody-
namic critical point.

With these assumptions, let us proceed to the mathe-
matical formulation of the growth problem (refer to Fig-
ure 4 for notation).

Liquid Continuity
a
— (rPu)=0 (5)
ar

which integrates to:

rPu=R" 6)

Vapor Continuity

Since the bubble space is taken as uniform, the rate of
change of its mass must be equal to the rate of vapor
supply through vaporization. This rate of vaporization is
obtained by converting the sensible heat supply to heat of

4

oA

gomdgicPy

A o

©® "o

Figure 4. Notation for bubble growth formulation.

vaporization.

oT
4 ar

1

o @

where X is the latent heat per unit mass. Hence:

d<4 R3> 1o (T :
‘]rv = — -
dat\3™ d arle X ®)

Liquid Momentum

u au

10
at 6r

oy Or

atr >0

R<r<o )

_./With

PR, 1)
P(, 1)
ur, 0)
R(0)

The radial velocity at infinity is zero (see Equation 6),
hence it is convenient to integrate this equation over the
radial coordinate to obtain an equation for the bubble
wall. First use Equation 6:

P
Py
0

R

( RR)+ T i
riidi 2 3r P ar ( )
Now integrate from R to co.
4 (R?R) R2— (P §98, (11)
R dt S gyt
Relate P, to P, by Equation 2 and rearrange:
RR‘+3R2— - (P,~P2) o 12)
2 e p/R
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at t > 0 with
R(0)=0
RO)=R.,

Vapor Momentum

The need for this equation has been eliminated by as-
suming uniform vapor.

Liquid Energy

aT oT 1= { aT}
+u—=a,—3— r’

at ar rrar ar
t>0
R<r<o (13)

or making use of Equation 6,

dT R?R AT 1.8 { 5 BT} (14)
PR et . rc —
ar r* or o rior or
with
nr-0=r. ~

T(R, t)=T*P,)
Eleo, =T

the second condition expresses assumption (c).

Vapor Energy

The need for this equation has been eliminated by as-
suming uniform, saturated vapor in equilibrium with the
bubble wall.

System Coupling Discussion

Equations 12 and 14 are coupled through Equation 8.
For a given P,, Equations 12 and 14 can be solved for a
small time increment for the acceleration (velocity and
radius too) and temperature distribution in the liquid, re-
spectively. These solutions can then be used in Equation
8 to find the resulting vapor density and thus, new vapor
pressure (saturated vapor assumption). More elaborate
models are possible, avoiding the assumptions of satu-
rated vapor in equilibrium with the bubble wall, by mak-
ing use of the vapor energy equation and a rate of vapor-
ization expression based on the kinetic theory of gases;
however, for most cases of interest these solutions indi-
cate that this assumption is very nearly correct.

SOLUTIONS

Before considering the solution of the complete system
of differential equations, it is instructive to consider cer-
tain limiting cases. These cases may be physically moti-
vated and correspond to assigning total control to only
one of the participating physical processes. For the case
at hand, for example, one limit would correspond to neg-
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ligible heat transfer limitations. The temperature of the
bubble wall would then be essentially equal to 7, and
thus, the pressure of the vapor would remain constant
and equal to its initial value P*(7). In this limit, Equa-
tion 12 is sufficient to solve for the growth rate. Since
momentum effects play the primary role in this limit, this
solution will be called the ‘‘momentum solution.”’ The
other extreme would correspond to the case where heat
transfer is so limiting that the bubble wall cools quickly
to the lowest possible temperature. Since in the complete
process the pressure of the vapor starts at its maximum
value, P*(T,) and monotonically decreases towards P,
the lowest possible vapor pressure is P,, and hence, the
lowest possible wall temperature is 7*(Pg). In this limit,
the second boundary condition for Equation 14 is com-
pletely derived and thus a solution to Equation 14 can be
obtained. Using this solution in Equation 8 the growth
rate can be found. The solution at this limit will be called
the ‘‘energy solution.”” The complete solution, discussed
after the ‘‘momentum’’ and ‘‘energy’’ solutions, must
encompass these two asymptotic limits and will provide
quantitative criteria specifying the limits of their applica-
bility.

/" Momentum Solution

The surface tension forces are important for the very
initial (microscopic) stages of the growth process. The
bubble growth process may be thought of to initiate from
a small perturbation in any of the three quantities of the
right-hand side of Equation 12, such as to produce a
small positive result (initially the right-hand side is zero).
According to Equation 12, an acceleration of the wall
results, and this growth leads to a rapid decrease of the
surface tension forces. Typically, critical radii are
smaller than 10— c¢m, thus by the time the bubble is
10! cm the surface tension force has dropped to 1% of
its initial value, i.e., can be considered negligible. Fur-
ther, assuming that P, = P*(T), and letting AP = P,
— P, Equation 12 can be rearranged:

=d R3R2}—AP (15)
2R?R dt o
or
: AP
d{R3R?}=2 — R%dR (16)
P1
which can be integrated to give:
oA D
R3R*=—— {R3-R3} 17
3 o

w22 (%)) b
: —3 P R )

This equation indicates that the velocity of the wall in-
creases rapidly from zero to a constant limiting value of

. (2AP) 12
R={__} (19)
3 o
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which is essentially obtained by the time the bubble has
grown to five times the critical size. This means that the
wall acceleration may be neglected in Equation 12, and
Equation 19 is applicable for the whole growth process.
From Equation 19, the bubble radius (take R,, ~ 0) may
be obtained as:

2AP Y12
P {_ _} ; 20)
3 0

Energy Solution

Because of the nonlinearity present in the convective
term of Equation 14, an analytical solution is rather in-
volved. Let us proceed, therefore, with the help of a heu-
ristic argument. The problem does havé the character of

transient conduction in an infinite media; hence expect - .

that the thermal boundary layer will vary prgportional to
Vayt, and the approximate temperature gradient at the
bubble wall will be:

e e AR 2
\/Ct’./t

Expanding the left-hand side of Equation 8 [using p, =
p*(Px), which is constant] and utilizing Equation 21
gives:

i "

47p*(PL)R?R = 4TR%* e alell 22)
XD TR RIR = ARy e =
a,t A

or

o Kil(Te = TH(Pw) -
No (P Wyt

This equation in fact is within a constant of 0.98 from
the exact solution of Equation 14. The solution for the
radius (take R, ~ 0) is obtained by integration:

Kl Tu= TP -
t
M F(Po)Vey

_ 2061 Te — T*(Pos )]\/—
M ¥(Ps)

(24)

Coupled Solution

Assume that Equations 19 and 23 are valid over the
regime of combined momentum and energy control, pro-
vided that the ‘‘actual’’ driving forces are utilized:

dR {2 Pu(t)—Pm} 172 25
dt 3 P, (25)
R _ = eille= TP T
IR PTIT S (26)
Define
T,— T*(P.)
Lo
ey T o

and relate P,(¢) and p, to T, by means of linear interpola-
tion between the initial state 7, p*¥(Ts) and the final

state, T*(P,), P, that is
Pu_Poozpf,k(Tv)_Poo=[P;k(Tw)_Poo]qsz (28)
~pXPe)=p M T ) ~p P
=[p¥(Tx)—p¥(Px)l®? 29
Thus Equation 25 and 26 become:
g T S
dR B 1—¢?2 1
ot LS, a1)
dt 2 [1+@[-1)¢?] V¢
where
P*(T,)—P
) P L Mk 32)
3 P
01T = T* (P21 2
B2=4
°" { No*(P.) } G
and
polTs)
= 34
p*(Pm) iy

The group A , has dimensions length over time and the
group B? has dlmensmns length square over time. They
can be utilized, therefore, to define characteristic length
and velocity scales, and thus nondimensionalize the sys-
tem (Equations 30 and 31).

—~’gnd

o R
~ (B*A,)
t*=; (35)
(BZ/Afk)
* dR*—qS (36)
" dr*x
dR*_ 1—¢2 1 a7
dt*  2[1+(@ —1)¢?] V=
From Equations 36 and 37, for ¢:
¢ 2
[1+@-1o*]l=—= (33)

(1-¢?) 2Vr*

which can be solved for ¢ = ¢(¢*; I'). Equation 36 can
then be integrated to yield R* as a function of #* with T’
as a parameter, i.e., R* = R*(¢*; I'). The results are
plotted in Figures 5 and 6. From these solutions, for #*
< 102, a good approximation is R* = ¢*, which is the
same as the momentum solution Equation 20; for #* >

American Institute of Chemical Engineers
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Figure 5. Solution to Equation 38.
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Figure 6. Universal plot of the bubble radius versus time.

102, a good approximation is R* = \/t*, which is the
same as the energy solution Equation 24. For intermedi-
ate values of £*, the process is controlled by both mo-
mentum and energy effects and the solution can be read
off the graphs. This solution has been checked against
experimental data as well as elaborate numerical simula-
tions with excellent results.

For low values of the density ratio, (I' < 2), the solu-
tion may be expressed analytically by:

2
R*=— {(B*t*+1)¥2=Bt*)*2 -1} 39
3B
where
* oty 2
,_ N2 (Pa) T~ TH(Py) o
TP £ (1)~ Po
NOMENCLATURE
A = frequency factor, 103 cm 3 s !
AL = see Equation 32
B = see Equation 33
C = heat capacity
o = bubble nucleation rate
K = Boltzman’s constant
k = thermal conductivity

Modular Instruction Series

o
2
/45

pressure
pressure difference

saturation pressure at 7’

bubble radius

dimensionless radius, see Equation 35
bubble wall velocity

bubble wall acceleration

radial coordinate

temperature

= saturation temperature at P
spontaneous nucleation temperature

([

t = time
i = = dimensionless time, see Equation 35
u %, radial liquid velocity

réek Letters

x = tRermal diffusivity

.‘§ tent heat of vaporization

r see Equation 34

o = density

p¥(P) = saturation vapor density at P

p¥(T) = saturation velocity density at T’
= surface tension
= see Equation 27

Subscripts

cr = critical

i = bubble internal

/ = liquid

m = maximum

v = vapor

0 = condition at infinity

SUGGESTED COMPLIMENTARY READING

1. Dwyer, O. E., ‘“Boiling Liquid-Metal Heat Transfer,’’ Chapters
1-4, American Nuclear Society, Hinsdale, IL (1976).

2. Hsu, Y. Y., “Transport Processes in Boiling and Two-Phase Sys-
tems,”’ Chapters 1 and 2, McGraw Hill, New York (1976).

STUDY PROBLEMS

1. In the absence of dissipation, the PdV work done by
the vapor during bubble growth shows up as kinetic
energy of the liquid. Utilize this idea to obtain an
equation for the bubble wall motion. Now discuss the
possibility of growth of a cylindrical or plane bubble
in an infinity sea of liquid.

2. Consider the effects of viscosity on bubble growth
rates.

(1) Should viscosity ‘appear in the equation of motion,
Equation 9? If so, in what form? If not, is the
flow inviscid or irrotational?

Modify Equation 12 to take into account viscous
effects, by utilizing an augmented form of Equa-
tion 2 that equates the total radial stress in the lig-
uid (at the wall) to P, — 20/R.

Consider the order of magnitude comparison of
the various terms in the modified Equation 12, to
obtain a criterion for judging the importance of
viscous effects.

@)

A3)



3. Obtain approximate ‘‘energy solutions’’ for the bubble
growth problem by neglecting appropriate terms in the
thermal energy equation. Compare and discuss in
physical terms the observed differences.

4. Obtain an approximate ‘‘energy solution’’ for the bub-
ble growth problem by means of the integral method.
Utilize a quadratic temperature profile. Compare to
the exact solution.

HOMEWORK PROBLEMS

1. Calculate the size of the largest cavity present for a
water system (at atmospheric pressure) that nucleates
50°C below its spontaneous nucleation limit. Estimate
the resulting bubble growth rate, in miles per hour. At
what time will the growth become controlled by ther-
mal effects? At what time will 50% of the maximum
possible driving force for heat transfer develop?

2. A glass apparatus is being constructed for the study of
nucleation and macroscopic growth of vapor bubbles
in highly superheated liquids (Figure 7). You are
asked to review the design and determine whether any
safety problems exist. You’d also want to examine
whether any operating limits can be specified to as-
sure safety.

Intended Design and Operation: The apparatus con-
sists of a cylindrical glass vessel as shown in the fig-
ure:

The nucleation point is approximately at the center of
the flask. The flange A is used for the various pene-
trations such as vacuum give, pressure tap, etc. (not

A
3 H= 40 cn
\ e h=35cm

'l D = 40 cm

z= 20 cm
" d =10 cm

J¢(——— Glycerol
<— Water
I b » & ——  Nucleation point
l z
~
l< > )|
Figure 7.

shown). The glycerol is used to prevent premature nu-
cleation. Infrared heating can be used to bring quickly
and uniformly the water up to any desired tempera-
ture. The desired superheat is then recorded with a
high speed motion picture camera.

Property specs: The apparatus (glass) can take up to
60 psi primary loading and 200 psi shock loading.

Assume: The bubble grows in a spherically symmet-
ric fashion with no displacement of its center.

. An important application of liquid sodium is as a

coolant in some advanced types of nuclear reactors.
Boiling of sodium plays an important role in the
safety assessment of these systems. Consider the sim-
ulation of sodium boiling from a bubble growth stand-
point by the much more convenient boiling of water.
Determine water conditions that will simulate bubble
growth in sodium under 30°C superheat and one at-
mosphere pressure. Discuss the results in physical
terms.

American Institute of Chemical Engineers



Module C6.2

Miscible Dispersion

R. Shankar Subramanian

Department of Chemical Engineering
Clarkson University
Potsdam, New York 13676

OBJECTIVES

After completion of this module, the student
should be able to describe and discuss the effects
of convective transport and diffusive transport
on the axial dispersion of solute in a conduit.

PREREQUISITE MATHEMATICAL SKILLS

1. Elementary calculus and differential equations.

2. An introduction to partial differential equa-
tions, such as the diffusion equation. Pre-
vious exposure to the equation of conserva-
tion of mass would be helpful.

PREREQUISITE ENGINEERING AND
SCIENCE SKILLS

1. Elementary modeling of transport problems,
especially elementary concepts of convective
and diffusive transport.

INTRODUCTION

Miscible dispersion refers to the mixing phenomena
which occur when two miscible fluids are brought to-
gether either when stationary or when they are in motion.
This definition is very broad, and it is not possible to do
justice to the wide range of topics it covers in one mod-
ule. So, attention will be confined here to the phenome-
non of dispersion which takes place when a solute is in-
troduced into fluid flowing in a conduit. Specifically, no
attempt will be made to treat mixing in agitated vessels,
which also would be called ‘‘dispersion.’’

While dispersion phenomena are fascinating to study
just from the point of view of scientific interest, there are
practical reasons for developing a good understanding of
such phenomena. Some applications are:

1. The distribution of tracers and drugs in the blood-
stream.

2. Conventional chromatography.

3. Field flow fractionation or polarization chromatogra-
phy.

4. The transient behavior of tubular reactors.

5. Pollutant transport in the atmosphere.

6. Material and thermal pollution of natural streams.

Modular Instruction Series

The list is by no W. New applications
will, doubtless, be found ifi the future. Serious study of
the subject was begun only about thirty years ago by G.
I. Taylor in a classic paper (52), and new developments
are being made even today.

In each of these examples, it might be seen that disper-
sion or mixing occurs due to two basic mechanisms.
T_l_xese are:

s/

1. convective or bulk transport
2. diffusive or molecular transport

Simplistic as this might sound, the interactions between
these two mechanisms lead to some very interesting con-
sequences. Before proceeding further, it is important to
distinguish between two basically different types of dis-
persion problems which emerge from the various applica-
tions.

In the first category, called ‘‘initial distribution prob-
lems,”’ a certain finite amount of solute is introduced into
a flow and permitted to disperse. There can be no non-
trivial steady state in such a situation, and all phenomena
of interest are transient. Elution chromatography is a
good example of this problem. In generalized dispersion
theory, such problems are handled by using an infinite
series solution which satisfies the appropriate initial and
boundary conditions. This series will be displayed later
in this module.

A second category of dispersion problems is character-
ized by the example of a chimney emitting pollutant con-
tinuously into the atmosphere or a chemical plant dis-
charging effluent continuously into a nearby stream. In
such problems, one might imagine the fluid medium (at-
mosphere or river) to be initially devoid of solute. At
time zero, the appropriate source of solute is turned on at
the inlet. This type of problem may be termed an ‘‘inlet
distribution problem.”’ If the discharge rate is steady, a
non-trivial steady state can be established at locations
close to the system inlet after a while. This steady state
will propagate down the flow as time goes on, carrying
in front of it a transient region. One approach for han-
dling this class of problems is to treat the continuous
source as a series of pulses, each one of which can be
handled using techniques suitable for initial distribution
problems. This method is known as superposition (/3)
and its application to inlet distribution problems has been
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discussed by Gill and Sankarasubramanian* (25, 4/), and
Gill (26), and clarified by Subramanian (57). More re-
cently, Smith (43-46) has used superposition innovatively
to construct solutions to both classes of problems using
his ‘‘delay-dispersion model.”’

In the rest of this module, attention is focused on *‘ini-
tial distribution problems’’ because of their relative sim-
plicity.

THE PHYSICAL PROBLEM

The dispersion of a solute introduced into a fluid flow-
ing into a conduit will be considered here. It is conven-
ient to approach the complex problem in which a solute
is dispersed due to the simultaneous action of convection
and diffusion in the presence of a non-uniformly distrib-
uted velocity field, say in a circular tube, via simple, ide-
alized, intermediate physical situations. These might be
called ‘‘thought experiments.”’

Consider a slug of dilute solution, x; units long and
having a uniform concentration C, of a suitable solute
held in an infinitely long circular tube as shown in Figure
1. This slug is separated from pure solvent on either side
of it by suitable impermeable barriers. The axial coordi-
nate x and the radial coordinate r are defined as shown in
the figure. All the thought experiments will be performed
on this system.

Experiment 1

At time zero, imagine the barriers on either side of the
slug are removed without causing any disturbance in the
fluid (this is very hard to do in practice, but easy to
imagine). No pressure gradient is imposed on the fluid so
that it remains completely stationary.

The solute will be observed to diffuse symmetrically
on either side of the original slug. The velocity resulting
from this diffusion is ignored by assuming the slug to be
very dilute. There is no radial or angular variation of

concentration in the system, since the slug is assumed to /

be initially uniform in concentration everywhere. This
diffusion process can be described mathematically by the
one-dimensional conservation equation for the local so-
lute concentration, C(¢, x). For a derivation of the con-
servation equation, see Bird, et al (6).

aC 92C
o P M

Here, ¢ is time, and D is the molecular diffusivity of the
solute in the fluid. The initial and boundary conditions on
C (2, x) for the system are:

1
Cl0;-3y=C;, "|x| 55 B

=0, |x|>=x,
|x| >

*R. Shankar Subramanian was formerly known as R. Sankarasubrama-
nian.
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Figure 1. The system.
C(, +)=0, t=0 3)

Equation 2 states that initially, the solute concentration
is C, everywhere inside the slug and zero everywhere
else. Equation 3 is characteristic of problems of this
type, and indicates that solute never reaches axial stations
infinitely far away from x = 0. The solution of Equa-
tions 1 to 3 for C(¢, x) is well-known and is given in
Crank (/4). Figure 2 shows the concentration distribution
from this solution as a function of axial position for vari-
ous values of time. In this simple thought experiment,
there is no bulk (convective) transport. Figure 2 shows
that symmetric axial spreading or dispersion of solute oc-
curs due to molecular diffusion.

Experiment 2

Just as was done in the first experiment, imagine the
barriers on either side of the slug are removed at time
zero without causing any disturbance. However, this
time, an axial pressure gradient is imposed on the fluid.
This will result in bulk motion. This motion is assumed
to be described by an idealized plug flow velocity pro-
file. That is,

Uy, = constant = v, “)
Here, v,, is the cross-sectional average velocity defined
by ~

R
j v dar
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Figure 2. Concentration versus axial coordinate for the diffusion
of a slug.
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