INTRODUCTION TO COMPUTERS,
STRUCTURED PROGRA MMING, AND APPLICATIONS

Module

A

Applications and Algorithms
in Business

FRANCES G. GUSTAVSON AnD C.WILLIAM GEAR




INTRODUCTION TO COMPUTERS,
STRUCTURED PROGRAMMING,
AND APPLICATIONS

Module

A

Apphcatmns and Algorithms
in Business

FRANCES G. GUSTAVSON

Pace University
Pleasantville, New York

C. WILLIAM GEAR

University of Illinois
Urbana, Illinois

SR A
SCIENCE RESEARCH ASSOCIATES, INC.

Chicago, Palo Alto, Toronto, Henley-on-Thames, Sydney, Paris, Stuttgart
A Subsidiary of IBM



T R¥ompositor Advanced Typesetting Services
Acquisition Editor Robert L. Safran
Project Editor . Jay Schauer
Special Editorial Assistance Stephen B. Chernicoff
Text Design ’ Judy Olson
Cover Design Michael Rogondino

© 1978 Science Research Associates, Inc. All rights reserved.
Printed in the United States of America.

LIBRARY OF CONGRESS CATALOGING IN PUBLICATION DATA

Gustavson, Frances G
Applications and algorithms in business.

(Introduction to computers, structured pro-
gramming, and applications)

Includes index.

1. Business—Data processing. 2. Algorithms.
1. Gear, Charles William, joint author. 1. Title.
II. Series.
HF5548.2.G87 658’.05’4 78-6091
ISBN 0-574-21190-X

10 9 87 65 43 21



INTRODUCTION TO COMPUTERS,
STRUCTURED PROGRAMMING,
' AND APPLICATIONS

Module
A

Applications and Algorithms
in Business




Preface

This version of Module A (Algorithms and Applications) is intended
for use by business students. Using the programming principles and
informal language introduced in Module P (Programming and Lan-
guages), a variety of techniques and methods of solution are -developed
that are useful in broad classes of numerical and nonnumerical prob-
lems. The material is organized so that later chapters depend minimally
on earlier ones, to allow the instructor flexibility in the selection and
ordering of topics. To help the instructor, a diagram appears at the be-
ginning of this module, showing specific prerequisites for each chapter.

For a one-semester course, Module A can be used to amplify the
material in Modules P and C by selecting example applications of in-
terest to the students. Alternatively, Modules A, C, and P together pro-
vide enough material for a two-semester sequence in business data
processing, computer programming, and management science. In the
first semester, Chapters Al and Chapters A5 through A10 of this module
can be covered, along with most of Module C and much of Module P,
while a language is being taught. The remainder of this module and
Module P can be covered in the second semester, along with a second
language if desired. The language manuals are so closely tied to Module
P that few additional ideas would have to be introduced: essentially it
would be necessary only to provide exercises in the syntax of the second
language.

This module can also be used in a separate course in business data
processing if the students have an adequate background in programming
in a nontrivial programming language. The informal language used to
describe algorithms is natural for anyone with moderate exposure to a
structured language; for students with experience only in Fortran or
Basic, a quick review of the General Introduction and a brief discussion
of the basic structured language constructs would be needed.



Aviii

PREFACE

This module teaches not only business applications but also the
concepts upon which the applications are based. Accordingly, this
module is a useful supplement for courses in computer science, mathe-
matics, and engineering students. Many of the business data processing
techniques in Chapters A5 through A8 and the management science
techniques in Chapters A9 through All depend heavily on mathematics
and other disciplines.



Module C

( G4: Computers/compile@

P Module A Module

( P3: Control | jg—— — — — A1: Algorithms

A2: Bisection

Q P4: Arrays H A3: Sorting
A

P9: Data Il H A4: Pointers
< P4: Arrays = o= — — — — — -)QS: Data Organization

\}\ LAS: File Processi"a

\\ '
\\ ¥
\\ Q?: Business Systems

D

)

\\ L A8: MIS

——> Required
= — — =» Recommended \ ¥

( A11: Simulation

Prerequisite structure for Module A




Al

A2

A3

A4

A5

A6

A7

A8

Contents

Preface

Types of Algorithm

Al.l Discussion and Examples of Algorithms
Al.2 Developing Algorithms for Business
Problems

The Method of Bisection
Problems

Searching and Sorting
A3.1 Binary Search
A3.2 Sorting
Problems

Pointers
Problems

Data Organization

A5.1 The Data Hierarchy
A5.2 Defining Records
Problems

File Processing
Problems

Introduction to Business Systems

A7.1 Summary of Business Information Systems
A7.2 Common Business Applications

Management Information Systems

A8.1 Definition of a Management Information System

A8.2 An Introduction to Data Base Technology

Avii

A4
A8
Al4

Al6
A2]

A22
A23
A26
A33

A35
A43

A45
A46
A48
A57

A58
A65

A67
A68
A70

A75
A76
A78



A9

AlO

All

CONTENTS

Introduction to Management Science A80
- A9.1 Queuing Theory A81
A9.2 Linear Programming A82
A9.3 Finding the Minimum—Enumeration and Calculus A84
A9.4 Markov Analysis A89
Problems A9
Decision Theory A94
Al0.1 Decision Making Under Risk A95
Al0.2 Decision Making Under Certainty A97
A10.3 Decision Making Under Complete Ignorance A98
A10.4 Decision Making Under Conflict—Game Theory A100
Al0.5 Conclusion A103
Problems . . Al104
Simulation Al105
All.l Continuous Simulation A106
All2 Discrete Simulation All0
Problems 2 A120
Appendix: Answers to Selected Problems Al123
Index Al30



Module

A

Algorithms and Applications
in Business

The purpose of a computer is to perform calculations that yield answers
to particular cases of general problems. These problems arise in many
application areas. Business applications include data processing, the
manipulation of large amounts of information—for example, to update
computer-stored files and generate reports and records of individual
business transactions (weekly pay slips, orders, invoices, airline tickets,
and so on). Another application is information retrieval, which allows
access to data in computer-stored files, to show potential trouble areas
quickly. A system that offers this function is called a management in-
formation system or MIS. Business applications also include operations-
research techniques such as simulation—the numerical representation
or modeling of a business problem. For example, a company may decide
where to put a new piece of machinery on the basis of a computer sim-
ulation of various new plant layouts. The simulation enables the com-
pany to find the layout that will yield the maximum return on the
investment.

Scientific and engineering applications include the approximate
solution of problems using numerical techniques. This is really a kind
of simulation, because the mathematical equations that are solved are
models of the real world; they represent the way the engineer or scientist
believes a process behaves. The engineer and scientist are also interested
in data processing if they are confronted with large amounts of experi-
mental data that must be correlated and compared. They can make good
use of information retrieval capabilities if they are working with large
amounts of textual data.

As you can see, different disciplines have similar problems that can
be solved by similar methods. In this module, we examine problems
such as sorting, searching, and pointer manipulation that are common

Al



A2

ALGORITHMS AND APPLICATIONS IN BUSINESS

to many application areas and develop methods of solution. In addition,
we examine some specialized business applications.

Chapters Al and A2 concentrate on algorithmic techniques that are
used for all data structures. The illustrations in these chapters involve
only simple variables. Chapters A3, A4 and A5 introduce fundamental
algorithms that operate on more complex data structures. Chapter Al
includes samples of business applications as examples of general types of
algorithms, and discusses general types of algorithms. Chapters A5
through A8 introduce data processing and information systems. Chap-
ters A9 through A1l introduce operations research/management science
techniques that aid in business decision making.



Chapter

Al

Types
of
Algorithm

There is no universal set of rules for designing algorithms: each new
problem may need a totally new approach. Indeed, it is this aspect of
computer programming that can be the most pleasurable, providing
a challenge akin to a crossword puzzle or chess problem and giving an
outlet to the ingenuity and creativity of the programmer. There are,
however, a number of basic types of algorithm that can frequently be
used to solve a particular problem.

Five common types of algorithm are given below, followed by ex-

amples and a discussion of each:

Direct computation—in which the exact answer is obtained by a
sequence of elementary computations.

Trial and error—a type of iteration in which each successive
approximation is based on the degree of error in the previous
approximation.

Divide and conquer—in which the problem is divided into similar
but smaller problems that can either be solved directly or be further
subdivided by the same technique.

Enumeration—in which all possible “answers” are tried in order
to find one that solves the problem.

Iteration—in which a series of increasingly precise approximate
answers are computed until one is obtained that is “‘close enough.”
(An exact solution would require an infinite number of op-
erations.)

A3



A4

TYPES OF ALGORITHMS

Al.1 DISCUSSION AND EXAMPLES OF ALGORITHMS

Direct computation. The income-tax computation of Chapter
G2 is an example of direct computation. This form of solution is ap-
plicable to simple problems in which the problem description itself
specifies the computation needed to solve the problem.

Example Al.1 Calculating Profit

Calculating the total profit that results from selling an item is an example
of a direct computation algorithm. For instance, a bookstore may want
to calculate the total profit resulting from the sales of one book in its
inventory. Total profit (TOTPROF) is calculated by subtracting the total
cost (TOTCOST) of an item from the total revenue (TOTREV) earned by
the item,

TOTPROF «TOTREV—TOTCOST

To find the total profit, we first need to know the total revenue and
total cost. These are calculated by multiplying the price per item (PRICE)
and the cost to the store per item (COST) by the number of units sold
(UNIT). In other words,

TOTREV<«=PRICE*UNIT
TOTCOST<«—COST*UNIT

To calculate TOTPROF, we need values for PRICE, COST, and UNIT. From
these, we can calculate TOTREV, TOTCOST, and TOTPROF. An algorithm
for these calculations is shown in the structured flowchart in Figure A1.1.

Let’s return to the bookstore example. Suppose 27 copies of a book
that costs $6.50 are sold for $9.25. The input would be

27. 6.50, 9.25
and the algorithm would compute the following values:

TOTREV = 9.25 X 27 = 249.75
TOTCOST = 6.50 X 27 = 175.50
TOTPROF = 249.75 — 175.50 = 74.25

input UNIT, COST, PRICE

TOTREV « PRICE * UNIT

TOTCOST « COST * UNIT

TOTPROF « TOTREV — TOTCOST
output TOTREV, TOTCOST, TOTPROF

Figure Al.1 Structured flowchart of program to calculate profit



Al.l DISCUSSION AND EXAMPLES OF ALGORITHMS

Scene in viewfinder Camera adjustment
v
& 20
2
First ~ o
trial % @ Too far &"
9
A4

12
Second N e
trial @ Too close g
Third
trial In focus

Figure A1.2 Trial-and-error adjustments in focusing a camera

Trial and Error. In trial-and-error algorithms, the amount by which a
current approximation fails to satisfy the problem is used to determine
the next approximation. This process is similar to the way people per-
form many everyday actions—driving a car, focusing a camera (see
Figure A1.2), or almost any action that involves movement.

While driving a car, for example, the driver steers by turning the
wheel, observing whether more or less turn is needed, and adjusting the
wheel accordingly. The driver first makes a trial attempt, and then
corrects to reduce the error. If forced to drive blindfolded, the driver
would not be able to steer correctly, because the measurement of the
error is essential to the correction. Chapter A2 gives a trial-and-error
method for solving problems common to many business and scientific
applications.

Divide and conquer. Breakinga problem into simpler subproblems
is a very powerful technique, useful for both numerical and nonnumeri-
cal problems. We will illustrate it with a search in an ordered list, such
as a telephone book. One way of doing such a search is to open the book
in the middle and see whether the item sought is before or after the
middle entry. This can be done by a single comparison with the middle
entry, because it is known that all items before that entry are alpha-
betically less and all items after it are alphabetically greater. Thus in
one step we have reduced the size of the list to be searched by half. The
same technique can now be applied to the smaller list. Thus, if the
original list had 16 items in it, the first comparison leaves us with a list
of 8 items to consider, the second with a list of 4, the third with a list
of 2, and the last with a list of 1. A list of one item can be searched very
quickly indeed! This particular search method, called a binary search,

A5



Aé

TYPES OF ALGORITHMS

is a very important technique and is the basis for many related algo-
rithms. We will be discussing it in more detail in Chapter A3.

Enumeration. A sequential search is an example of enumeration:
each entry in a list is checked to see if it is the one sought. Enumeration
is usually very slow, but sometimes it is the only method available.
Often it is possible to start with an enumeration method and improve
it by avoiding obviously impossible cases, as the following example
shows.

Example A1.2 Prime Numbers

Given a positive number N greater than 1, find the smallest integer
M > 1 that divides N exactly.

If the smallest divisor is N, then N must be prime. An enumerative
method for solving this problem is simply to test each integer less than
N, starting with 2, to see if it divides N. If one is found, it is the smallest.
To program this solution, we need to be able to test whether M divides
N. This is a basic operation in some computers and programming
languages, but not in others. However, it can be programmed in terms
of more elementary operations by testing whether N is equal to (N <+ M)*M
(see Chapter P2). Our first attempt at this program is shown in Program
ALl If N is prime, the loop is executed N — 2 times (for the values
M =123 ...,N—1). Alittle thought reveals that if N is not prime,
one of its divisors must be less than or equal to the square root of N,
so there is no need to test any values above that. Program Al.1a gives a
revised version. For the case N = 127, Program Al.l executes its loop
125 times, whereas Program Al.la executes its loop only 10 times. A
further improvement is possible by checking only for M = 2 and the odd
numbers between 3 and the square root of N.

Enumeration methods are the basis of many programs for non-
numerical problems, but because they can be so slow, it is essential to
conduct a careful analysis to look for improvements.

Program Al.1 Find a divisor of N

SMALLEST___DIVISOR: program
integer M.N
M2
do while M*(N+-M)#N
Me—M+1
enddo
output M
endprogram SMALLEST___DIVISOR



Al.l DISCUSSION AND EXAMPLES OF ALGORITHMS

Program Al.la Improved divisor program

SMALLEST__DIVISOR: program
integer M,N
Me2
do while MT2=<N and M*(N+M)#N
Me—M+1
enddo
if MT2>N then M«<N endif
output M
endprogram SMALLEST___DIVISOR

Iteration. Iteration techniques are usually applicable to numerical
problems. An example is the computation of a function such as sin(X).
It can be shown that the value of sin(X) is given by the expression

sin(X) = X — X3/3! 4+ X3/5! — XT/71 + . . .

(where 5! means 5 X 4 X 3 X 2 X 1, or factorial 5). This does not lead
to a direct algorithm, because it requires an infinite number of opera-
tions. However, for any desired degree of precision, it is sufficient to use
only the first part of the infinite sequence. In particular, if we are con-
tent with a precision of +10-5 for all values of X between —1.0 and
+1.0, it can be shown that we can use

sin(X) = X — X3/3! + X5/5! — X7/7!

This computation requires only a finite number of operations, and can
now be coded directly. If more precision is needed, additional terms can
be added. For example, the next term (X°/9!) should be added if an
accuracy of 1077 is required for the same values of X. It can be shown for
this example that the desired precision can be achieved by including all
terms until a term is generated that is smaller than the error allowed, so
a program can be written to iterate until the desired accuracy is ob-
tained, as shown in Program Al.2.

Program Al.2 Compute sine by iteration

SINE: program
The sine of a number X is computed using a power series. Terms
are added until the next term is less than ERROR.
real SINE,X,ERROR.NEXT_TERM,I
SINE<X
l<—4.0
NEXT__TERM<«—X13/6.0

A7



A8

TYPES OF ALGORITHMS

do while ABS(NEXT_TERM)=ERROR
SINE<SINE+NEXT__TERM
NEXT_TERM <« —NEXT_TERM*X12 / (I*(I1+1.0))
l<I1+2.0
enddo
output ‘SINE OF’ X,’IS’,SINE
endprogram SINE

In Program Al.2, the variable SINE is used to accumulate the value
of the approximation to sin(X). Alternate negative and positive values,
which are always decreasing in absolute value, are added to SINE in
successive passes through the loop. The program takes advantage of the
fact that, in the infinite series representation of sin(X), each term to be
added can be obtained from the previous term. For example,

— X1 X5 —X2 X5 —X7
70 = <§> X (—7 > 6) uses a to compute 71

and

X9 __x7 _.x2 _X7 X9
o1 = ( 70 ) X <9 > 8) uses 70 to compute 91

Al.2 DEVELOPING ALGORITHMS FOR BUSINESS

Now that we've discussed the different types of algorithms, let’s examine
how they can be used in business situations. Algorithms are developed
to solve specific problems. The first step in developing an algorithm is
to understand the problem to be solved and its method of solution ; this
often is the most difficult part of writing a program.

As an example of algorithm development, consider how an accoun-
tant’s procedures for determining depreciation can be transformed into
computer programs. The physical assets of a business, such as machinery,
buildings, and equipment, tend to wear out, and must be discarded;
they depreciate in value. Businesses must account for the depreciation of
physical assets as they determine the cost of doing business.

There are several means of determining depreciation. They all follow
a similar pattern. The difference between the original cost of an asset
(its book value) and however much the asset can be sold for at the end
of its useful life (its salvage value) is apportioned over the life of the
asset. Depreciation methods vary in how much loss in an asset’s value
they attribute to any given period of time. Some methods divide de-
preciation equally across the life of the asset; others provide for faster
depreciation in the early life of the asset, and slower depreciation later.



