NATURAL GAS RESERVOIR ENGINEERING

CHI U. IKOKU

NATURAL GAS RESERVOIR ENGINEERING

CHI U. IKOKU

The Pennsylvania State University

JOHN WILEY & SONS

New York • Chichester • Brisbane • Toronto • Singapore

Copyright © 1984, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Request for permission or further information should be addressed to the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:

Ikoku, Chi U.

Natural gas reservoir engineering.

Includes bibliographical references and indexes.

1. Gas, Natural. 2. Gas wells. I. Title.

TN880.I335 1984 662'.33285 ISBN 0-471-89482-6 84-7260

Printed in the United States of America

10987654321

PREFACE

This book presents concepts and applications of reservoir engineering principles essential to optimum development of natural gas reservoirs. It is based on courses taught at The University of Tulsa, The Pennsylvania State University, and adult education seminars in the United States and overseas.

The development of a natural gas field always depends on the reservoir and well characteristics as well as the equipment performance. A systems approach is emphasized throughout the book, since change in any component of the field production system will affect the performance of the other components. This book is arranged so that it can be used as a text or reference work for students and practicing engineers, geologists, and managers in the crude oil and natural gas production industry.

Chapter 1 discusses methods of estimating nonassociated, associated, and dissolved gas and abnormally pressured gas reserves. Reserves estimation and performance prediction for gas-condensate reservoirs are treated in Chapter 2. A comprehensive and rigorous treatment of production decline curve analysis is given in Chapter 3.

In Chapters 4 and 5 the theory and application of gas well testing are discussed. Well test analysis is an important subject in reservoir engineering, since it enables us to obtain reservoir parameters that could be used to predict future reservoir performance. Chapter 4 considers deliverability or back-pressure testing of gas wells. Chapter 5 discusses pressure transient analysis for gas wells. Both the pressure-squared technique and the pseudo-pressure function or real gas potential technique are treated and compared.

The systems approach is used to determine optimum gas field development strategies in Chapter 6; examples of reservoir performance techniques and field development patterns are presented. Chapter 7 extends some of the techniques of gas transmission and gas reservoir engineering to the storage of natural gas.

Much of the material on which this book is based was drawn from the publications of the Society of Petroleum Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers, the American Gas Association, the Division of Production of the American Petroleum Institute, and the Gas Processors Suppliers Association. Tribute is due to these organizations and also to a host of schools and authors who sponsor programs and have contributed to petroleum literature in various other publications.

viii Preface

I am indebted to my students, whose enthusiasm for the subject has made teaching a pleasure. To my colleagues who have adopted this material in various petroleum and natural gas engineering departments in the United States and overseas, I express my gratitude for their constructive criticisms and comments that became textbook inputs. I thank Peggy Conrad for typing the manuscript.

I would like to express my appreciation to the editorial staff of John Wiley, including Merrill Floyd and Deborah Herbert, for their patience and politeness. I thank Cindy Stein-Lapidus and the members of Wiley's production staff for a fine job.

Chi U. Ikoku

NOMENCLATURE

QUANTITIES IN ALPHABETICAL ORDER

(*) Dimensions: L = length, m = mass, $q = electrical\ charge$, t = time, and T = temperature.

(**) To avoid conflicting designation in some cases, use of reserve symbols and reserve subscripts is permitted.

Quantity	SPE Standard	Reserve SPE Letter Symbols**	Dimen- sions*
air requirement	а	F_a	
angle	α alpha	βbeta	
angle	θ theta	γ gamma	
angle, contact	θ_c theta	γ_c gamma	
angle of dip	α_d alpha	θ_d theta	
area	A	S	L^2
Arrhenius reaction rate velocity constant	w	z	L^3/m
breadth, width, or (primarily in fracturing) thick-		~	L/m
ness	b	W	L_{\cdot}
burning-zone advance rate	v_b	V_b , u_b	L/t
capillary pressure	P_c	P_c, p_c	m/Lt^2
charge	Q	q	
coefficient, convective heat transfer	h h	h_h, h_T	$\frac{q}{m/t^3T}$
coefficient, heat transfer, interphase convective		n_h , n_T	m/t 1
(use h , or convective coefficient symbol, with			
pertinent phase subscripts added)			m/t^3T
coefficient, heat transfer, overall	U	U_T , U_{θ}	
coefficient, heat transfer, radiation	I	I_T, I_{θ}	m/t^3T
components, number of	C		m/t^3T
compressibility	c	n _c	1.2/
compressibility factor	z	k, к kappa Z	Lt^2/m
concentration	Č		
		c, n	various

Courtesy of Society of Petroleum Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.

xvi Nomenclature

Quantity	SPE Standard	Reserve SPE Letter Symbols**	Dimensions*
condensate or natural gas liquid content	C_L	c_L, n_L	various
conductivity	σ sigma	γ gamma	various
conductivity, thermal (always with additional	O	1 8	
phase or system subscripts)	k_h	λ lambda	mL/t^3T
contact angle	θ_c theta	γ_c gamma	//LZ/1
damage ratio ("skin" conditions relative to forma-	or theta	ic gamma	
tion conditions unaffected by well operations)	F_s	F_d	
density	ρ rho	D	m/L^3
depth	D	y, H	L
diameter	d	у, 11 D	L
diffusion coefficient	D D		
dimensionless fluid influx function, linear aquifer		μ mu, δ delta	L^2/t
	Q_{LiD}	Q_{llD}	*21
dispersion coefficient	K	d	L^2/t
displacement	S	L	L
displacement ratio	δ delta	F_d	
distance between adjacent rows of injection and			
production wells	d	L_d, L_2	L
distance between like wells (injection or produc-			
tion) in a row	а	L_a , L_1	L
distance, length, or length of path	L	s, l script l	L
efficiency	E	η eta, e	
electrical resistivity	ρ rho	R	mL^3/tq^2
electromotive force (voltage)	E	V	mL^2/t^2q
elevation referred to datum	Z	D, h	L
encroachment or influx rate	e	i	L^3/t
energy	E	U	mL^2/t^2
enthalpy (always with phase or system subscripts)	H	I	mL^2/t^2
enthalpy (net) of steam or enthalpy above reser-			
voir temperature	H_s	I_s	mL^2/t^2
enthalpy, specific	h	i	L^2/t^2
entropy, specific	S	σ sigma	L^2/t^2T
entropy, total	S	σ_t sigma	mL^2/t^2T
equilibrium ratio	K	k, F_{eq}	
fluid influx function, linear aquifer, dimensionless	Q_{LiD}	Q_{ltD}	
flow rate or flux, per unit area (volumetric ve-			
locity)	\mathcal{U}	ψ psi	L/t
flow rate or production rate	q	Q	L^3/t
fluid (generalized)	F	f	various
flux	u	ψ psi	various
force	F	Q	mL/t^2
formation volume factor	B	F	
fraction gas	f_g	F_g	
fraction liquid	f_L	F_L, f_l	
frequency	f	νnu	l/t

Nomenclature xvii

Quantity	SPE Standard	Reserve SPE Letter Symbols**	Dimensions*
fuel consumption	m	F_F	various
fuel deposition rate	N_R	N_F	m/L^3t
gas (any gas, including air)—always with identify-			
ing subscripts	G	g	various
gas in place in reservoir, total initial	G	g	L^3
gas-oil ratio, producing (if needed, the reserve			
symbols could be applied to other gas-oil ratios)	R	F_g , F_{go}	
general and individual bed thickness	h	d, e	L
gradient	g	γ gamma	various
heat flow rate	Q	q , Φ phi _{cap}	mL^2/t^3
heat of vaporization, latent	L_v	λ_v lambda	L^2/t^2
heat or thermal diffusivity	α alpha	α , η_h eta	L^2/t
heat transfer coefficient, convective	h	h_h, h_T	m/t^3T
heat transfer coefficient, interphase convection			
(use h, or convective coefficient symbol with			
pertinent subscripts added) heat transfer coefficient, over-all			m/t^3T
heat transfer coefficient, radiation	U	U_T, U_{θ}	m/t^3T
height (elevation)	I 7	I_T, I_{θ}	m/t^3T
height (other than elevation)	Z	D, h	L
hydraulic radius	h	d, e	L
index of refraction	r_H	R_H	L
influx (encroachment) rate	n	μ mu ·	- 3 /
influx function, fluid, linear aquifer, dimension-	е	i	L^3/t
less		0	
initial water saturation	Q_{LiD}	Q_{liD}	
injectivity index	$\frac{S_{wi}}{I}$	ρ_{wi} rho, S_{wi}	r 4.7
intercept	b	i Y	L^4t/m
interfacial or surface tension	σ sigma	_	various
interstitial-water saturation in oil band	S_{wo}	y, γ gamma	m/t^2
irreducible water saturation	S_{iw}	S_{wb}	
kinematic viscosity	νnu	ρ_{iw} rho, S_{iw}	L^2/t
length	L		L/t L
length, path length, or distance	L	s, I script I s, I script I	L
mass flow rate	w	m	
mobility ratio	M	F_{λ}	m/t
mobility ratio, diffuse-front approximation,		ľλ	
$[(\lambda_D + \lambda_d)_{\text{swept}}/(\lambda_d)_{\text{unswept}}]; D$ signifies displacing; d signifies displaced; mobilities are evaluated at average saturation conditions behind and ahead of front mobility ratio, sharp-front approximation, (λ_D/λ_d) mobility ratio, total, $[(\lambda_t)_{\text{swept}}/(\lambda_t)_{\text{unswept}}];$ "swept" and "unswept" refer to invaded and	$M_{\overline{S}}$ M	M_{Dd}, M_{su} F_{λ}	
uninvaded regions behind and ahead of leading			

xviii Nomenclature

Quantity	SPE Standard	Reserve SPE Letter Symbols**	Dimensions*
edge of a displacement front mobility, total, of all fluids in a particular region	M_t	$F_{\lambda t}$	
of the reservoir; e.g., $(\lambda_o + \lambda_g + \lambda_w)$	λ_t lambda	Λ lambda _{cap}	L^3t/m
modulus, bulk	K	K_b	m/Lt^2
modulus of elasticity in shear	G	E_s	m/Lt^2
modulus of elasticity (Young's modulus)	E	$Y^{''}$	m/Lt^2
mole fraction gas	f_g	F_g	
mole fraction liquid	f_L	$\mathring{F_L}, f_I$	
molecular refraction	R	N	L^3
moles, number of	n	N	
moles of liquid phase	L	n_L	
moles of vapor phase	V	n_v	
moles, total	n	n_t, N_t	
number (of moles, or components, or wells, etc.)	n	N	
oil (always with identifying subscripts)	n	n	various
oil in place in reservoir, initial	N	n	L^3
oxygen utilization	e_{o_2}	$E_{\rm o}$	
path length, length, or distance	L	s, I script I	L
permeability	k	K	L^2
Poisson's ratio	μ mu	ν nu, σ sigma	
porosity	φ phi	f , ε epsilon	
pressure	p	P	m/Lt^2
production rate or flow rate	q	Q	L^3/t
productivity index	J	j	L^4t/m
quality (usually of steam)	f_s	Q, x	
radial distance	Δr	ΔR	L
radius	r	R	L
radius, hydraulic	r_H	R_H	L
ratio, damage ("skin" conditions relative to for-			
mation conditions unaffected by well opera-	F	-	
tions)	F_s	F_d	
ratio initial reservoir free gas volume to initial		F F	
reservoir oil volume	m	F_{Fo}, F_{go}	
ratio, mobility	M	F_{λ}	
ratio, mobility, diffuse-front approximation,			
$[(\lambda_D + \lambda_d)_{\text{swept}}/(\lambda_d)_{\text{unswept}}]$; D signifies displacing; d signifies displaced; mobilities are			
evaluated at average saturation conditions be-			
hind and ahead of front	M-	14 14	
	$M_{\overline{S}}$	M_{Dd}, M_{su}	
ratio, mobility, sharp-front approximation, (λ_D/λ_d)	M	Γ	
ratio, mobility, total, $[(\lambda_t)_{\text{swept}}/(\lambda_t)_{\text{unswept}}]$;	IVI	$F\lambda$	
"swept" and "unswept" refer to invaded and			
uninvaded regions behind and ahead of leading			
edge of a displacement front	M_{t}	F	
reaction rate constant	k	$F_{\lambda t}$	I /+
The constant	r.	r, j	L/t

Nomenclature xix

		Reserve SPE	
0 111	SPE	Letter	Dimen-
Quantity	Standard	Symbols**	sions*
reciprocal formation volume factor, volume at standard conditions divided by volume at reser-			
voir conditions	b	f, F	
reciprocal permeability	j	ω omega	$1/L^{2}$
resistance	r	R Smega	mL^2/tq^2
resistance	r	R	various
resistivity, electrical	ρ rho	R	mL^3/tq^2
saturation	S	ρ rho, s	me / iq
saturation, water, initial	S_{wi}	ρ_{wi} rho, s_{wi}	
saturation, water, irreducible	S_{iw}	ρ_{iw} rho, s_{iw}	
skin effect	S	S, \sigma	
skin (radius of well damage or stimulation)	r_s	R_s	L
slope	m	A	various
specific gravity	γ gamma	s, F_s	
specific heat (always with phase or system sub-		· · · · · · ·	
scripts)	C	c	L^2/t^2T
specific heats ratio	γ gamma	k	
specific injectivity index	I_s	i_s	L^3t/m
specific productivity index	J_s	j_s	L^3t/m
specific volume	υ	U_S	L^3/m
specific weight	F_{wv}	γ gamma	m/L^2T^2
stimulation radius of well (skin)	r_s	R_s	L
strain, normal and general	ε epsilon	e , ε_n epsilon	
strain, shear	γ gamma	ε_s epsilon	
strain, volume	θ theta	θ_v theta	
stress, normal and general	σ sigma	S	m/Lt^2
stress, shear	τ tau	S_S	m/Lt^2
surface tension	σ sigma	y, γ gamma	m/t^2
temperature	T	θ theta	T
thermal conductivity (always with additional			
phase or system subscripts)	k_h	λ lambda	mL/t^3T
thermal cubic expansion coefficient	β beta	b	1/T
thermal or heat diffusivity	α alpha	a , η_b eta	L^2/t
thickness (general and individual bed)	h	d, e	L
time	t	τ tau	t
total mobility of all fluids in a particular region			2
of the reservoir; e.g., $(\lambda_o + \lambda_g + \lambda_w)$	λ_t lambda	Λ lambda _{cap}	L^3t/m
total mobility ratio, $[(\lambda_l)_{\text{swept}}/(\lambda_l)_{\text{unswept}}];$ "swept" and "unswept" of the same state of the same stat			
"swept" and "unswept" refer to invaded and			
uninvaded regions behind and ahead of leading	M	r	
edge of a displacement front	M_t	$F_{\lambda t}$	13-
transfer coefficient, convective heat	h	h_h, h_T	m/t^3T
transfer coefficient, heat, interphase convective (use h , or convective coefficient symbol with			
pertinent phase subscripts added)			1.300
transfer coefficient, heat, overall	U	11 11	m/t^3T
dansier coefficient, neat, overall	U	U_T, U_{θ}	m/t^3T

xx Nomenclature

Quantity	SPE Standard	Reserve SPE Letter Symbols**	Dimen- sions*
transfer coefficient, heat, radiation	I	I_T, I_{Θ}	m/t^3T
utilization, oxygen	e_{o} ,	E_{o}	
velocity	v	V, u	1L/t
viscosity	μ mu	η eta	m/Lt
volume	V	v	L^3
volumetric velocity (flow rate or flux, per unit			
area)	и	ψ psi	L/t
water (always with identifying subscripts)	W	W	various
water in place in reservoir, initial	W	W	L^3
water saturation, initial	S_{wi}	ρ_{wi} rho, s_{wi}	
water saturation, irreducible	S_{iw}	ρ_{iw} rho, s_{iw}	
wave number	σ sigma	$ ilde{U}$	1/L
weight	W	w, G	mL/t^2
wet-gas content	C_{wg}	C_{wg}, n_{wg}	various
width, breadth, or (primarily in fracturing) thick-			
ness	b	W	L
work	W	W	mL^2/t^2

Subscripts

Subscript	SPE Standard	Reserve SPE Letter Subscripts**
air	а	A
atmospheric	а	A
average or mean saturation	$\frac{a}{S}$	$\bar{\rho}$ rho, \bar{s}
band or oil band	b	В
base	b	r , β beta
boundary conditions, external	е	0
breakthrough	BT	bt
bubble point or saturation	b	S
burned or burning	b	B
calculated	C	calc
capillary (usually with capillary pressure, P_c)	С	C
casing or casinghead	С	cg
contact (usually with contact angle, θ_c)	C	Č
core	C	C
cumulative influx (encroachment)	е	i
damage or damaged (includes "skin" conditions)	S	d
depleted region, depletion	d	δ delta
dispersed	d	D
dispersion	K	d
displaced	d	s, D
displacing or displacement	D	s, σ sigma

Nomenclature xxi

	SPE	Reserve SPE Letter
Subscript	Standard	Subscripts**
entry	e	E
equivalent	eq	EV
estimated	E	est
experimental	E	EX
fill-up	F	f
finger or fingering	f	F
flash separation	f	F
fraction or fractional	f	r
fracture, fractured, or fracturing	$f_{\underline{}}$	F
free (usually with gas or gas-oil ratio quantities)	F	f_{-}
front, front region, or interface	f	F
gas	g	G
gross	t	T
heat or thermal	h	T , θ theta
	h	H
horizontal	H	h
hydrocarbon imbibition	h	Н
influx (encroachment), cumulative	I	<i>i</i> script i
injected, cumulative	e :	i
injected, cumulative injection, injected, or injecting	i i	I ii
inner or interior	i i	inj
interface, front region, or front	f	ι iota, <i>i</i> script i F
interference	$\stackrel{J}{I}$	
invaded	i	i, i script i I
invaded zone	i	I
invasion	I	i
irreducible	i	<i>i</i> script i, ι iota
linear, lineal	L	I script I
liquid or liquid phase	L	I script I
lower	I script I	L
mean or average saturation	$\frac{1}{S}$	$\bar{\rho}$ rho, \bar{s}
mixture	M	m
mobility	λ lambda	M
nonwetting	nw	NW
normalized (fractional or relative)	n	r, R
oil	0	n
outer or exterior	е	0
permeability	k	K
pore (usually with volume, V_p)	p	P
production period (usually with time, t_p)	p	P
radius, radial, or radial distance	r	R
reference	r	b , ρ rho
relative	r	R
reservoir	R .	r

xxii Nomenclature

Subscript	SPE Standard	Reserve SPE Letter Subscripts**
residual	r	R
saturation, mean or average	$\frac{r}{S}$	$\bar{\rho}$ rho, \bar{s}
saturation or bubble point	b	S
segregation (usually with segregation rate, q_s)	S	S, σ sigma
shear	S	τ tau
skin (stimulation or damage)	S	S
slip or slippage	S	σ sigma
solid(s)	S	σ sigma
stabilization (usually with time)	S	S
steam or steam zone	S	S
stimulation (includes "skin" conditions)	S	S
storage or storage capacity	S	S , σ sigma
strain	ε epsilon	e
surface	S	σ sigma
swept or swept region	S	S , σ sigma
system	S	σ sigma
temperature	T	h , θ theta
thermal (heat)	h	T , θ theta
total, total system	t	T
transmissibility	T	t
treatment or treating	t	τ tau
tubing or tubing head	t	tg
unswept or unswept region	и	U
upper	и	U
vaporization, vapor, or vapor phase	ν	V
velocity	ν	V
vertical	V	V
volumetric or volume	V	ν
water	W	W
weight	W	W
wellhead	wh	th
wetting	w ·	W

CONTENTS

Nome	enciali	ire xv	
1. E	STIMA	TION OF GAS RESERVES 1	
1.1 1.2 1.3	Gas i	duction 1 n Place by Volumetric Equation 2 rial-Balance Equation 4	
1.4	1.3.2 1.3.3	Assumptions 4 Derivation 4 Application 6 ves and Reservoir Performance Predictions 6	
1.5	1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7 1.4.8 1.4.9	Volumetric Estimates 7 Material Balance Estimates 10 Pressure Decline Curve p/z Method 15 MBE Straight-line Method (After Havlena and Odeh) 20 Reservoir Size 31 Rate versus Time 32 Liquid Recovery 33 Associated Gas Reserves 34 Dissolved Gas Reserves 35 ral Material-Balance Equation 36	0 47
Refere Proble		49 50	
2. G	AS CC	ONDENSATE RESERVOIRS 53	
2.1 2.2	Vapor 2.2.1 2.2.2	duction 53 r-Liquid Equilibriums 55 Calculation of Vapor-Liquid Equilibrium 56 Determination of Convergence Pressure and Equilibrium Ratios	58
	2.2.3 2.2.4	Bubble-Point Pressure 60 Dew-Point Pressure 60	

x Contents

2.3	Gas-Co	ondensate Testing and Sampling 60
2.4	2.3.1 I	Laboratory Tests of Condensate Systems 61 nsate System Behavior in the Single-Phase Region 64
	2.4.1	Calculation of Initial Gas in Place and Oil in Place for
2.5		Gas-Condensate Reservoirs 64 nsate System Behavior in the Two-Phase Region 67
	2.5.1	Two-Phase Gas Deviation Factor 69
2.6.	2.5.3	Condensate Material Balance 72 Reservoir Performance—Retrograde Gas-Condensate Reservoirs 72 voir Performance Prediction 76
	2.6.2	Gas-Condensate Reservoir Operation by Pressure Depletion Gas-Condensate Reservoir Operation by Pressure Maintenance or Cycling 87
		Economics of Gas-Condensate Recovery 91
Refere		92
Proble	ems	93
3. PF	RODUG	CTION DECLINE CURVES 95
3.1 3.2	Introdu	uction 95 mic Limit 97
3.3		ication of Decline Curves 97
	0.0.1	Nominal and Effective Decline 100
		Constant Percentage Decline 101 Harmonic Decline 113
		Hyperbolic Decline 117
3.4 3.5	Fractio Summa	on of Reserves Produced at a Restricted Rate 130 ary 133
Refere	ences	137
Proble	ems	137
4. D	ELIVER	ABILITY TESTING OF GAS WELLS 141
4.1	Introd	
4.2		Description on the second of t
	4.2.2	Steady State Flow 142 Gas Well Testing (According to the Steady State Theory) 151
4.3		Parcy Flow 152
4.4		/ell Deliverability Tests 156
		Flow After Flow Tests 159 Isochronal Tests 162
	4.4.3	Modified Isochronal Tests 166
	4.4.4 4.4.5	Deliverability Plot 169 Performance Coefficient C and Exponent n 170

	4.5 4.6 4.7 4.8 4.9	Better Method for Analyzing Isochronal Test Data 182 Jones-Blount-Glaze Method 188 European Method 190	
	Refer Probl	rences 194 lems 195	
	5. T	RANSIENT TESTING OF GAS WELLS 201	
	5.1 5.2	Introduction 201 Transient Flow of Real Gases Through Porous Media 202 5.2.1 Pressure-Squared Representation 203 5.2.2 Al-Hussainy-Ramey-Crawford Technique 204 5.2.3 When to Use Pseudo Pressure Approach 207	
	5.3	The Constant Terminal Rate Solution 209 5.3.1 Boundary Effects 214	
	5.4	Application of Real Gas Flow Equations 5.4.1 Drawdown Testing 5.4.2 Buildup Testing 5.4.3 Summary 223 216 220	
	5.5	Average Reservoir Pressure 233 5.5.1 Finite Reservoirs 233 5.5.2 Matthews-Brons-Hazebroek Method 235	
	5.6	Other Topics 240 5.6.1 Wellbore Storage 240 5.6.2 Fractured Wells 242 5.6.3 Type-Curve Matching 247 5.6.4 Wells Producing by Solution Gas Drive (Two-Phase Flow) 5.6.5 Restricted Entry 261	258
	Refere Proble		
(6. G	AS FIELD DEVELOPMENT 279	
	6.1 6.2	Introduction 279 Reserves 280 6.2.1 Reservoir Performance 280 6.2.2 Field Development Pattern 282	
		Deliverability 283 6.3.1 Reservoir Deliverability 284 6.3.2 Well Spacing 287 6.3.3 Equipment Capacity Limitations 280	

xii Contents

6.4	Predicting Reservoir Performance 293 6.4.1 Reservoir versus Flow-Line Capacity 294 6.4.2 Rate-Time Prediction 296 6.4.3 Use of Darcy's Radial Flow Equation 298
6.5	Optimum Development Patterns (After van Dam) 6.5.1 Gas Field Development Model 307 6.5.2 Present-Value Calculations 308 6.5.3 Optimum Production Rate 309
Refere Proble	
7. ST	ORAGE OF NATURAL GAS 317
7.1 7.2	Introduction 317 Natural Gas Storage in Pipelines 318 7.2.1 Storage Capacity of Simple Pipelines 319
7.3	Underground Storage of Natural Gas3227.3.1 Purpose of Underground Gas Storage3227.3.2 Segments of a Gas Storage Reservoir3237.3.3 Storage Field Reservoir Consideration324
7.4	Storage in Depleted Oil Reservoirs 326
7.5	Storage in Aquifers 327 7.5.1 Exploring for Aquifer Storage Reservoirs 327
	7.5.2 Growth of Storage Bubble 330 7.5.3 Operation of Aquifer Storage Reservoirs 343
7.6	Natural Gas Storage in Man-Made Caverns 343
	 7.6.1 Storage in Salt Caverns 344 7.6.2 Storage in Conventionally Mined Caverns 349 7.6.3 Storage in Converted Mines 352 7.6.4 Summary 352
References 353	
APPEN	NDIX A PROPERTIES OF NATURAL GASES 355
A.1 A.2 A.3 A.4 A.5 A.6	Physical Constants 355 Pseudocritical Properties of Gases 355 Gas Deviation Factor (z -Factor) 363 Gas Formation Volume Factor B_g 363 Gas Viscosity μ 380 Gas Compressibility c_g 380
References 386	