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Series Preface

Today large numbers of geoscientists apply thermodynamic theory to solu-
tions of a variety of problems in earth and planetary sciences. For most
problems in chemistry, the application of thermodynamics is direct and
rewarding. Geoscientists, however, deal with complex inorganic and organic
substances. The complexities in the nature of mineralogical substances arise
due to their involved crystal structure and multicomponental character. As a
result, thermochemical solutions of many geological-planetological problems
should be attempted only with a clear understanding of the crystal-chemical
and thermochemical character of each mineral. The subject of physical
geochemistry deals with the elucidation and application of physico-chemical
principles to geosciences. Thermodynamics of mineral phases and crystalline
solutions form an integral part of it. Developments in mineralogic thermody-
namics in recent years have been very encouraging, but do not easily reach
many geoscientists interested mainly in applications. This series is to provide
geoscientists and planetary scientists with current information on the develop-
ments in thermodynamics of mineral systems, and also provide the active
researcher in this rapidly developing field with a forum through which he can
popularize the important conclusions of his work. In the first several volumes,
we plan to publish original contributions (with an abundant supply of back-
ground material for the uninitiated reader) and thoughtful reviews from a
number of researchers on mineralogic thermodynamics, on the application of
thermochemistry to planetary phase equilibria (including meteorites), and on
kinetics of geochemical reactions.

The success of this venture is assured because of the great interest shown by
many scientists who have adorned the list of editors for the series, and by
many others who have promised to contribute to the series in coming years.
The launching of the series with articles by many eminent physical geochem-
ists was made possible through the efforts of Bob Newton, Alex Navrotsky,
and Bernie Wood.

The staff of Springer-Verlag deserves thanks from the geoscientists for
accepting the care of the publication of these volumes. I sincerely hope that
this series will not only keep geochemists up to date in the field, but will also
prove useful in opening up new avenues of research, both in the basic



vi Series Preface

formulation of thermodynamic theory as applied to planetary research and in
direct application to the solution of genetic problems.

November 17, 1980
S. K. Saxena

Brooklyn, New York



Volume Preface

This volume is the outgrowth of a seminar series on thermodynamics of
mineral systems held in the spring of 1979 in the Department of the Geophysi-
cal Sciences at the University of Chicago. Many of the contributors to this
volume participated in the seminar series.

This book is intended to give a cross-section of current activity in many
different areas of thermodynamical geochemistry. The contributions were
solicited from the standpoints of scope and diversity rather than comprehen-
sive treatment of any particular field. The application of thermodynamics to
the earth and planetary sciences is now so great that no single, moderate-sized
book can sample every sub-field.

The first article of this volume is a commentary by George Tunell on the
basic equation of chemical equilibrium of J. Willard Gibbs, which underlies
all of chemical thermodynamics. The succeeding papers are grouped with
“minerals” or “melts” and, within each group, generally proceed from general
to specialized to applied.

No attempt is made to militate one system of units over another or to
achieve uniformity of symbol usage among all of the authors; these things are
left to the authors’ preferences. The systems of units and the symbols used in
this book are all in wide use at the present time. Where many different
symbols are used in a paper, a table of notation is given.

The editors hereby acknowledge the invaluable help of the following review-
ers: J. V. Chernosky, R. N. Clayton, O. I. Kleppa, Alan Matthews, C. T.
Prewitt, and E. F. Westrum.

June 1980 R. C. Newton, Chicago, Illinois
A. Navrotsky, Tempe, Arizona
B. J. Wood, Richland, Washington
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I. General Principles






1.

The Operational Basis and Mathematical
Derivation of the Gibbs Differential
Equation, Which Is the Fundamental
Equation of Chemical Thermodynamics*

G. Tunell

The basic thermodynamic relations for systems of variable composition were
first derived by J. Willard Gibbs in his memoir entitled On the Equilibrium of
Heterogeneous Substances (1874-1878). From the differential equation express-
ing the relation between the energy, the entropy, and the masses of the
components of a homogeneous system of variable composition Gibbs then
derived the conditions of equilibrium in a heterogeneous system, and from
these equilibrium conditions he obtained the phase rule.

Donnan (1924) stated that it is now a well-known matter of history how
Bakhuis Roozeboom, the first to undertake an extensive experimental explora-
tion of the field of heterogeneous equilibria, had his attention drawn by van
der Waals to the theoretical researches of Gibbs, and how Bakhuis
Roozeboom found in this work the sure foundation and guide that he
required. Donnan stated further that under the influence of Bakhuis
Roozeboom and van’t Hoff the study of heterogeneous equilibria, treated
chiefly from the graphical standpoint, developed rapidly in Holland, and from
there, extended to every part of the world. It can fairly be said that van’t Hoff,
d’Ans, Arrhenius, Lachmann, and Jinecke,' by their work on the oceanic salt
and potash deposits in Germany, created the science of experimental mineral-
ogy as a special branch of the theory of heterogeneous equilibria. This science
has subsequently been applied extensively to the study of igneous and meta-
morphic rocks at the Geophysical Laboratory of the Carnegie Institution of
Washington and other institutions.

It is the purpose of the present writer to show that the Gibbs differential
equation, his Eq. (12), which is the fundamental equation of chemical thermo-
dynamics, has a very simple operational basis, and that, from the experimen-
tally determinable relations, this equation can be obtained by a simple
mathematical transformation.

In the choice of letters to denote the various thermodynamic quantities, I
have generally followed the recommendations of the American Standards

*Part of the material in this article was presented in a lecture in the Department of the
Geophysical Sciences of the University of Chicago on June 1, 1979.

The original work by van’t Hoff and his associates and the subsequent improvements and
extensions of the theory of the origin of the German salt and potash deposits have been well
summarized by Janecke (1923).



4 G. Tunell

Table 1. List of symbols used by the present author in this
article and the corresponding symbols used by J. Willard Gibbs
in his memoir On the Equilibrium of Heterogeneous Substances

Quantity Tunell Gibbs

Temperature on the Celsius scale t
Temperature on the absolute

thermodynamic scale T t
Pressure ¥4 P
Volume of a system Vv v
Work done by a system w 74
Heat received by a system Q Q
Heat capacity at constant pressure <
Latent heat of change of pressure

at constant temperature A
Energy of a system U €
Entropy of a system S
Chemical potential of component

n in an open system M Py
Mass of component » in an

open system m, m,

Association set forth in Letter Symbols for Physics prepared by the Sectional
Committee on Letter Symbols and Abbreviations for Science and Industry.?
The correspondence of the symbols used in this article with those used by
Gibbs in his memoir entitled On the Equilibrium of Heterogeneous Substances is
shown in Table 1.

The Gibbs differential equation, his Eq. (12), is as follows (Gibbs, 1874—
1878, p. 116; or 1928, Vol. 1, p. 63)

dU=TdS — pdV + p,dm, + p,dm, - - - + p,dm,.

The symbols in this equation have the following significance: U denotes the
energy of a phase of variable composition (solution), 7 its absolute thermody-
namic temperature, S its entropy, p its pressure, V its volume, ; the partial
derivative of U with respect to m,;, m, the mass of component 1 in the
solution, etc. The diagram in Fig. 1 represents a water bath in which there is a
system of three chambers. Chamber I contains pure component 1, chamber 11
contains pure component 2, and chamber III contains a solution consisting of
components 1 and 2. Chambers I and III are separated by a semipermeable
membrane permeable only to component 1 and chambers II and III are
separated by a semipermeable membrane permeable only to component 2.
The Gibbs differential equation with two pdm terms then applies to the binary
solution in chamber I1I.

Since the Gibbs differential equation applies to an open system, one would
expect that the authors of textbooks on chemical thermodynamics would have

Published by the American Society of Mechanical Engineers, New York, 1948 (ASA Z 10.6—
1948 UDC 003.62:53).
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Fig. 1. A thermostat containing a system of three chambers separated by semiperme-
able membranes. Chambers I and II contain pure components 1 and 2 and chamber
III contains a solution made up of components 1 and 2.

done one of two things; one would expect that they would either have
explained that it is not necessary to define heat or work in the case of an open
system in order to derive this equation or else they would have provided
operational definitions of heat and work in the case of open systems if they
considered that such definitions were necessary. Actually, however, they have
done neither of these things. The authors of all of the textbooks of thermody-
namics with which [ am acquainted that have discussed Gibbs’s Eq. (12) have
accepted it without attempting to supply an operational basis for it (Fin-
kelstein, 1969, p. 84; Fleury and Mathieu, 1954, p. 286; Guggenheim, 1950, p.
449; Kirkwood and Oppenheim, 1961, p. 52; Moelwyn-Hughes, 1957, p. 283;
Partington, 1950, p. 106; Prigogine, Defay, and Everett, 1954, p. 67; Sommer-
feld, Bopp, Meixner, and Kestin, 1956, p. 87, Wall, 1965, p. 189). Thus, for
example, Prigogine, Defay, and Everett (1954, p. 66) state that: “For closed
systems the first law of thermodynamics establishes the existence of the
function of state U. We now presume that this function must also exist when
the number of moles varies in an arbitrary manner” [italics by Prigogine, Defay,
and Everett].

Several authors (Guggenheim, 1950, p. 17; Keenan, 1948, p. 449; Moelwyn-
Hughes, 1957, pp. 282-283) have correctly indicated that the Gibbs differen-
tial equation for an open system is a generalization of the Clausius differential
equation for a closed system. Thus I think it may be helpful if we reexamine
the operational basis and mathematical proof of the Clausius differential
equation as a starting point from which to proceed to the derivation of the
Gibbs differential equation.

In classical thermodynamics we begin with temperature f,> pressure p, and
volume ¥V as measurable quantities. In the case of a one-component system of
fixed mass it is then found by experiment that a relation exists between these
three quantities

®(p, V,1) =0, (1)

>The temperature ¢ is here obtained as a reading on a thermometer (mercury in glass or platinum
resistance or nitrogen gas, etc.).
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which can in general be solved for any one of the three as a function of the
other two. In connection with the operation of steam engines it was found
useful to define a quantity, work W done by a body (one-component system
of fixed mass), by the equation

w=("pav, @)
Vo

where p is given as a function of ¥ by an equation p = f(¥") which defines the
series of states through which the system passes. The discovery of the heat
capacities by Black and Irvine in the late 1700s established the basis for the
quantitative study of heat. With the further development of this subject one
can say that the heat Q absorbed by a body (one-component system of fixed
mass) in passing through a particular series of states can be represented by the
line integral

v at at
Q=p{c( )dp+( )dV} 3
Po-Vo g aP v )
where ¢, denotes the heat capacity at constant volume, ¢, denotes the heat
capacity at constant pressure, where 7 is given as a function of p and V by the
equation of state, and p is given as a function of ¥ by the equation of the
path.

By transformation of the integrals in Egs. (2) and (3) from the (p, V')-plane
to the (¢, p)-plane we then have

W= r’p{P(a_V)dt+p(aV)dp} (4)
torpo ot
V being given as a function of ¢ and p by the equation of state, and
Q=" {cpdt + I, dp), (5)
lo:Po

where the path is now defined by the equation p =A(¢) and where /, =
(v — ¢,)1/3p)y*

For a one-component system of fixed mass undergoing a reversible change
of state the first law of thermodynamics states that the difference in energy in
two states is equal to the heat received minus the work done by the system in
passing from the first state to the second state:

U(”P)_U(’o,Po)=ftOt:){( P%V)d""(lp_l’%—g)dp}’ (6)

“The latent heat of change of pressure at constant temperature [, can thus be evaluated in terms
of the heat capacity at constant pressure and the heat capacity at constant volume and the partial
derivative (3¢/3p), from the equation of state by transformation of the heat integral from the
(p, V)-plane to the (¢, p)-plane before the introduction of either the first law of thermodynamics
or the second law of thermodynamics. However, after the introduction of the first and second

laws it can be proved that IP =-T@V/d T)P (T being the absolute thermodynamic temperature);
consequently [, can then be evaluated from the equation of state without involving ¢, or ¢,
(Bridgman, 1925, p. 10; Tunell, 1960, p. 10, Eq. (16)).
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where U denotes the energy of the body, and the second law of thermodynam-
ics states that the difference in entropy in two states is equal to the integral of
dQ divided by the absolute thermodynamic temperature of the body, which is
a function of ¢ alone:

Y /
$(.7) = S(i0po) = [7{ e+ T}, )
0-F0

where T denotes the absolute thermodynamic temperature of the body and S
denotes the entropy of the body. From Eq. (6) it then follows according to a
theorem on line integrals that are independent of the path (Osgood, 1925, pp.
229-230) that

oU v
-— = _ R 8
(), e(57), ®)
and
2 2y p(22) )
(ap c 7 e ), ©)
and from Eq. (7) it follows that
Sy _ %
(_t),,—T (10)
and
(3_3)_—_[1 (1
op), T~

Equations (1) and (7) can be solved in general for ¢ and p as functions of S
and V and since U was originally a function of ¢ and p, we then have U also
as a function of § and V, U = ¥(S, V), and consequently we have

dU=(%—g)VdS+(g—g)SdV. (12)

The partial derivatives of U with respect to S and V are obtained by the use of
a well-established theorem on the use of Jacobian determinants to express a
partial derivative of a function with respect to a new set of independent
variables in terms of partial derivatives with respect to an original set of
independent variables (Bryan, 1903, p. 113, Eq. (82); Osgood, 1925, p. 150,
Exercise 31; Burington and Torrance, 1939, p. 138, Exercise 7; Sherwood and
Reed, 1939, p. 174, Eq. (164); Tunell, 1960, pp. 27-32) to be

aU/at dU/op

(a_U) _ WU, V)/3(t, p) _ ’aV/az aV/apl

a8 /v (S, V)/d(¢, p) 90S/9t 9S5/9p

\BV/at 8V/8p’

[e, —pdV/dt]aV/op—[I, —pdVv/oplav /st
(c,/T)aV /3p — (1,/T)aV /ot
=T (13)




