Francisco Azevedo
Pedro Barahona
Francois Fages
Francesca Rossi (Eds.)

Recent Advances
in Constraints

11th Annual ERCIM International Workshop

on Constraint Solving and Constraint Logic Programming, CSCLP 2006
Caparica, Portugal, June 2006

Revised Selected and Invited Papers

LNAI 4651

[.1-53 h Springer

C 7 Fran01sco Azevedo Pedro Barahona
2006 Frangois Fages Francesca Rossi (Eds.)

Recent Advances
in Constraints

11th Annual ERCIM International Workshop
“on Constraint Solving and

Contraint Logic Programming, CSCLP 2006
Caparica, Portugal, June 26-28, 2006
Revised Selected and Invited Papers

& springer WM

E2007003095

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Francisco Azevedo
Universidade Nova de Lisboa
2829-516 Caparica, Portugal
E-mail: fa@di.fct.unl.pt

Pedro Barahona
Universidade Nova de Lisboa
2825 Caparica, Portugal
E-mail: pb@di.fct.unl.pt

Francois Fages

INRIA Rocquencourt - Projet CONTRAINTES
BP 105, 78153 Le Chesnay Cedex, France
E-mail: Francois.Fages @inria.fr

Francesca Rossi

University of Padova

35131 Padova, Italy

E-mail: frossi@math.unipd.it

Library of Congress Control Number: 2007931597

CR Subject Classification (1998): 1.2.3, F3.1-2, F4.1, D.3.3, F2.2, G.1.6,1.2.8
LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-73816-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73816-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12096343 06/3180 543210

Lecture Notes in Artificial Intelligence 4651
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Preface

Constraints are a natural way to represent knowledge, and constraint program-
ming is a declarative programming paradigm successfully used to solve many
difficult combinatorial problems. Examples of application domains where such
problems naturally arise, and where constraint programming has made a valuable
contribution, are scheduling, production planning, communication networks,
robotics, and bioinformatics.

This volume contains the extended and reviewed versions of a selection of
papers presented at the 11th International Workshop on Constraint Solving
and Constraint Logic Programming (CSCLP 2006), that was held during June
26-28, 2006 at the New University of Lisbon, Portugal. It also contains papers
that were submitted in response to the open call that followed the workshop.
Both types of papers were reviewed independently by three experts in the specific
topics.

The papers in this volume present original research results, as well as appli-
cations, in many aspects of constraint solving and constraint logic programming.
Research topics that can be found in the papers are symmetry breaking, privacy,
distributed forward checking, quantified CSPs, bipolar preferences, first-order
constraints, microstructure, constraint handling rules, acyclic clustered prob-
lems, as well as the analysis of application domains such as disjunctive resource
problems and stochastic inventory control. Moreover, the volume also contains
a tutorial on hybrid algorithms.

The editors would like to take the opportunity to thank all the authors who
submitted a paper to this volume, as well as the reviewers for their helpful work.
This volume was made possible thanks to the support of the European Re-
search Consortium for Informatics and Mathematics (ERCIM), the Association
for Constraint Programming (ACP), the Portuguese Foundation for Science and
Technology (FCT), the Department of Computer Science of the New University
of Lisbon, and its Centre for Artificial Intelligence (CENTRIA).

We hope that the present volume is useful to everyone interested in the recent
advances and new trends in constraint programming, constraint solving, problem
modelling, and applications.

March 2007 F. Azevedo
P. Barahona
F. Fages

F. Rossi

Organization

CSCLP 2006 was organized by the ERCIM Working Group on Constraints.

Organizing and Program Committee

Francisco Azevedo CENTRIA, FCT/UNL, Portugal
Pedro Barahona CENTRIA, FCT/UNL, Portugal
Francois Fages INRIA Rocquencourt, France
Francesca Rossi ~ University of Padova, Italy

Additional Reviewers

R. Bartdk N. Jussien B. Peintner

M. Basharu A. Kovacs S. Prestwich
M. Benedetti A. Lallouet J.-F. Puget

T. Benoist M. Maher S. Soliman

D. Le Berre F. Manya J. Vautard

S. Bistarelli M. Meister M. Wallace

K. Cheng P. Meseguer R. Wallace

K. Djelloul M. Moffitt R. Yap

T. Frithwirth E. Monfroy N. Yorke-Smith
B. Hnich B. O’Sullivan P. Zoeteweij

Sponsoring Institutions

ERCIM Working Group on Constraints
Association for Constraint Programming
Universidade Nova de Lisboa

Centro de Inteligéncia Artificial, Portugal
Fundagdo para a Ciéncia e Tecnologia, Portugal

Lecture Notes in Artificial Intelligence (LNAI)

Vol. 4660: S. DZeroski, J. Todoroski (Eds.), Computa-
tional Discovery of Scientific Knowledge. X, 327 pages.
2007.

Vol. 4651: F. Azevedo, P. Barahona, F. Fages, F. Rossi
(Eds.), Recent Advances in Constraints. VIII, 185 pages.
2007.

Vol. 4632: R. Alhajj, H. Gao, X. Li, J. Li, O.R. Zaiane
(Eds.), Advanced Data Mining and Applications. XV,
634 pages. 2007.

Vol. 4617: V. Torra, Y. Narukawa, Y. Yoshida (Eds.),
Modeling Decisions for Artificial Intelligence. XII, 502
pages. 2007.

Vol. 4612: 1. Miguel, W. Ruml (Eds.), Abstraction, Re-
formulation, and Approximation. XI, 418 pages. 2007.

Vol. 4604: U. Priss, S. Polovina, R. Hill (Eds.), Con-
ceptual Structures: Knowledge Architectures for Smart
Applications. XII, 514 pages. 2007.

Vol. 4603: F. Pfenning (Ed.), Automated Deduction —
CADE-21. XII, 522 pages. 2007.

Vol. 4597: P. Perner (Ed.), Advances in Data Mining. XI,
353 pages. 2007.
Vol. 4594: R. Bellazzi, A. Abu-Hanna, J. Hunter (Eds.),

Artificial Intelligence in Medicine. XVI, 509 pages.
2007.

Vol. 4585: M. Kryszkiewicz, J.F. Peters, H. Rybinski,
A. Skowron (Eds.), Rough Sets and Intelligent Systems
Paradigms. XIX, 836 pages. 2007.

Vol. 4578: F. Masulli, S. Mitra, G. Pasi (Eds.), Applica-
tions of Fuzzy Sets Theory. XVIII, 693 pages. 2007.
Vol. 4573: M. Kauers, M. Kerber, R. Miner, W. Wind-
steiger (Eds.), Towards Mechanized Mathematical As-
sistants. XIII, 407 pages. 2007.

Vol. 4571: P. Perner (Ed.), Machine Learning and Data
Mining in Pattern Recognition. XIV, 913 pages. 2007.

Vol. 4570: H.G. Okuno, M. Ali (Eds.), New Trends in
Applied Artificial Intelligence. XXI, 1194 pages. 2007.
Vol. 4565: D.D. Schmorrow, L.M. Reeves (Eds.), Foun-
dations of Augmented Cognition. XIX, 450 pages. 2007.
Vol. 4562: D. Harris (Ed.), Engineering Psychology and
Cognitive Ergonomics. XXIII, 879 pages. 2007.

Vol. 4548: N. Olivetti (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. X, 245 pages.
2007.

Vol. 4539: N.H. Bshouty, C. Gentile (Eds.), Learning
Theory. XII, 634 pages. 2007.

Vol. 4529: P. Melin, O. Castillo, L.T. Aguilar, J.
Kacprzyk, W. Pedrycz (Eds.), Foundations of Fuzzy
Logic and Soft Computing. XIX, 830 pages. 2007.

Vol. 4511: C. Conati, K. McCoy, G. Paliouras (Eds.),
User Modeling 2007. XVI, 487 pages. 2007.

Vol. 4509: Z. Kobti, D. Wu (Eds.), Advances in Artificial
Intelligence. XII, 552 pages. 2007.

Vol. 4496: N.T. Nguyen, A. Grzech, R.J. Howlett, L.C.
Jain (Eds.), Agent and Multi-Agent Systems: Technolo-
gies and Applications. XXI, 1046 pages. 2007.

Vol. 4483: C. Baral, G. Brewka, J. Schlipf (Eds.), Logic

Programming and Nonmonotonic Reasoning. IX, 327
pages. 2007.

Vol. 4482: A. An, J. Stefanowski, S. Ramanna, C.J. Butz,
W. Pedrycz, G. Wang (Eds.), Rough Sets, Fuzzy Sets,
Data Mining and Granular Computing. XIV, 585 pages.
2007.

Vol. 4481:J. Yao, P. Lingras, W.-Z. Wu, M. Szczuka, N.J.
Cercone, D. Slgzak (Eds.), Rough Sets and Knowledge
Technology. XIV, 576 pages. 2007.

Vol. 4476: V. Gorodetsky, C. Zhang, V.A. Skormin, L.
Cao (Eds.), Autonomous Intelligent Systems: Multi-
Agents and Data Mining. XIII, 323 pages. 2007.

Vol. 4455: S. Muggleton, R. Otero, A. Tamaddoni-
Nezhad (Eds.), Inductive Logic Programming. XII, 456
pages. 2007.

Vol. 4452: M. Fasli, O. Shehory (Eds.), Agent-Mediated
Electronic Commerce. VIII, 249 pages. 2007.

Vol. 4451: T.S. Huang, A. Nijholt, M. Pantic, A. Pent-
land (Eds.), Artifical Intelligence for Human Computing.
XVI, 359 pages. 2007.

Vol. 4438: L. Maicher, A. Sigel, L.M. Garshol (Eds.),
Leveraging the Semantics of Topic Maps. X, 257 pages.
2007.

Vol. 4429: R. Lu, J.H. Siekmann, C. Ullrich (Eds.), Cog-
nitive Systems. X, 161 pages. 2007.

Vol. 4426: Z.-H. Zhou, H. Li, Q. Yang (Eds.), Advances
in Knowledge Discovery and Data Mining. XXV, 1161
pages. 2007.

Vol. 4411: R.H. Bordini, M. Dastani, J. Dix, AEF.
Seghrouchni (Eds.), Programming Multi-Agent Sys-
tems. X1V, 249 pages. 2007.

Vol. 4410: A. Branco (Ed.), Anaphora: Analysis, Algo-
rithms and Applications. X, 191 pages. 2007.

Vol. 4399: T. Kovacs, X. Llora, K. Takadama, P.L.. Lanzi,
W. Stolzmann, S.W. Wilson (Eds.), Learning Classifier
Systems. XII, 345 pages. 2007.

Vol. 4390: S.0. Kuznetsov, S. Schmidt (Eds.), Formal
Concept Analysis. X, 329 pages. 2007.

Vol. 4389: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),

Environments for Multi-Agent Systems III. X, 273
pages. 2007.

Vol. 4384: T. Washio, K. Satoh, H. Takeda, A. Inokuchi
(Eds.), New Frontiers in Artificial Intelligence. IX, 401
pages. 2007.

Vol. 4371: K. Inoue, K. Satoh, F. Toni (Eds.), Compu-
tational Logic in Multi-Agent Systems. X, 315 pages.
2007.

Vol. 4369: M. Umeda, A. Wolf, O. Bartenstein, U. Geske,
D. Seipel, O. Takata (Eds.), Declarative Programming
for Knowledge Management. X, 229 pages. 2006.

Vol. 4342: H. de Swart, E. Ortowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments II. X, 373 pages.
2006.

Vol. 4335: S.A. Brueckner, S. Hassas, M. Jelasity, D.
Yamins (Eds.), Engineering Self-Organising Systems.
XII, 212 pages. 2007.

Vol. 4334: B. Beckert, R. Hihnle, PH. Schmitt (Eds.),
Verification of Object-Oriented Software. XXIX, 658
pages. 2007.

Vol. 4333: U. Reimer, D. Karagiannis (Eds.), Practical
Aspects of Knowledge Management. XII, 338 pages.
2006.

Vol. 4327: M. Baldoni, U. Endriss (Eds.), Declarative
Agent Languages and Technologies IV. VIII, 257 pages.
2006.

Vol. 4314: C. Freksa, M. Kohlhase, K. Schill (Eds.), KI
2006: Advances in Artificial Intelligence. XII, 458 pages.
2007.

Vol. 4304: A. Sattar, B.-h. Kang (Eds.), Al 2006: Ad-
vances in Artificial Intelligence. XXVII, 1303 pages.
2006.

Vol. 4303: A. Hoffmann, B.-h. Kang, D. Richards, S.
Tsumoto (Eds.), Advances in Knowledge Acquisition
and Management. XI, 259 pages. 2006.

Vol. 4293: A. Gelbukh, C.A. Reyes-Garcia (Eds.), MI-
CAI 2006: Advances in Artificial Intelligence. XXVIII,
1232 pages. 2006. .

Vol. 4289: M. Ackermann, B. Berendt, M. Grobelnik, A.
Hotho, D. Mladeni¢, G. Semeraro, M. Spiliopoulou, G.
Stumme, V. Svétek, M. van Someren (Eds.), Semantics,
Web and Mining. X, 197 pages. 2006.

Vol. 4285: Y. Matsumoto, R.W. Sproat, K.-F. Wong, M.
Zhang (Eds.), Computer Processing of Oriental Lan-
guages. XVII, 544 pages. 2006.

Vol. 4274: Q. Huo, B. Ma, E.-S. Chng, H. Li (Eds.), Chi-
nese Spoken Language Processing. XXIV, 805 pages.
2006.

Vol. 4265: L. Todorovski, N. Lavra¢, K.P. Jantke (Eds.),
Discovery Science. XIV, 384 pages. 2006.

Vol. 4264: J.L.. Balcézar, PM. Long, F. Stephan (Eds.),
Algorithmic Learning Theory. XIII, 393 pages. 2006.

Vol. 4259: S. Greco, Y. Hata, S. Hirano, M. Inuiguchi,
S. Miyamoto, H.S. Nguyen, R. Stowiriski (Eds.), Rough
Sets and Current Trends in Computing. XXII, 951 pages.
2006.

Vol. 4253: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part I1I. XXXII, 1301 pages. 2006.

Vol. 4252: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part II. XXXIII, 1335 pages. 2006.

Vol. 4251: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part I. LXVI, 1297 pages. 2006.

Vol. 4248: S. Staab, V. Svitek (Eds.), Managing Knowl-
edge in a World of Networks. XIV, 400 pages. 2006.

Vol. 4246: M. Hermann, A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning.
XIII, 588 pages. 2006.

Vol. 4223: L. Wang, L. Jiao, G. Shi, X. Li, J. Liu (Eds.),
Fuzzy Systems and Knowledge Discovery. XXVIII,
1335 pages. 2006.

Vol. 4213: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Knowledge Discovery in Databases: PKDD
2006. XXII, 660 pages. 2006.

Vol. 4212: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Machine Learning: ECML 2006. XXIII, 851
pages. 2006.

Vol. 4211: P. Vogt, Y. Sugita, E. Tuci, C.L. Nehaniv
(Eds.), Symbol Grounding and Beyond. VIII, 237 pages.
2006.

Vol. 4203: F. Esposito, Z.W. Ra$, D. Malerba, G. Semer-
aro (Eds.), Foundations of Intelligent Systems. XVIII,
767 pages. 2006.

Vol. 4201: Y. Sakakibara, S. Kobayashi, K. Sato, T.
Nishino, E. Tomita (Eds.), Grammatical Inference: Al-
gorithms and Applications. XII, 359 pages. 2006.

Vol. 4200: I.LE.C. Smith (Ed.), Intelligent Computing in
Engineering and Architecture. XIII, 692 pages. 2006.

Vol. 4198: O. Nasraoui, O. Zaiane, M. Spiliopoulou, B.
Mobasher, B. Masand, P.S. Yu (Eds.), Advances in Web
Mining and Web Usage Analysis. IX, 177 pages. 2006.

Vol. 4196: K. Fischer, I.J. Timm, E. André, N. Zhong

(Eds.), Multiagent System Technologies. X, 185 pages.
2006.

Vol. 4188: P. Sojka, 1. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XV, 721 pages. 2006.

Vol. 4183: J. Euzenat, J. Domingue (Eds.), Artificial
Intelligence: Methodology, Systems, and Applications.
X111, 291 pages. 2006.

Vol. 4180: M. Kohlhase, OMDoc — An Open Markup
Format for Mathematical Documents [version 1.2]. XIX,
428 pages. 2006.

Vol. 4177: R. Marin, E. Onaindia, A. Bugarin, J. Santos
(Eds.), Current Topics in Artificial Intelligence. XV, 482
pages. 2006.

Vol. 4160: M. Fisher, W. van der Hoek, B. Konev, A.
Lisitsa (Eds.), Logics in Artificial Intelligence. XII, 516
pages. 2006.

Vol. 4155: O. Stock, M. Schaerf (Eds.), Reasoning, Ac-
tion and Interaction in Al Theories and Systems. X VIII,
343 pages. 2006.

Vol. 4149: M. Klusch, M. Rovatsos, T.R. Payne (Eds.),
Cooperative Information Agents X. XII, 477 pages.
2006.

EVIoN 2 ¥

Table of Contents

Tutorial

Hybrid Algorithms in Constraint Programming 1
Mark Wallace

Technical Papers

An Attempt to Dynamically Break Symmetries in the Social Golfers
(o o] = v 33
Francisco Azevedo

A Constraint Model for State Transitions in Disjunctive Resources 48
Roman Bartdk and Ondrej Cepek

Reusing CSP Propagators for QCSPs i . 63
Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard

Bipolar Preference Problems: Framework, Properties and Solving

Techniques 78
Stefano Bistarelli, Maria Silvia Pini, Francesca Rossi, and
K. Brent Venable

Distributed Forward Checking May Lie for Privacy 93
Ismel Brito and Pedro Mesequer

Solving First-Order Constraints in the Theory of the Evaluated Trees.... 108
Thi-Bich-Hanh Dao and Khalil Djelloul

Extracting Microstructure in Binary Constraint Networks 124
Chavalit Likitvivatanavong and Roland H.C. Yap

Complexity of a CHR Solver for Existentially Quantified Conjunctions
of Equations over TTeeso.ouuinenen 139
Marc Meister, Khalil Djelloul, and Thom Frihwirth

Efficient Recognition of Acyclic Clustered Constraint Satisfaction
Problems 154
Igor Razgon and Barry O’Sullivan

VIII Table of Contents

Cost-Based Filtering for Stochastic Inventory Control

S. Armagan

Tarim, Brahim Hnich, Roberto Rossi, and

Steven Prestwich

Author Index

Hybrid Algorithms in Constraint Programming

Mark Wallace

Monash University, Faculty of Information Technology,
Building 63, Clayton, Vic. 3800, Australia
mark.wallaceQinfotech.monash.edu.au

http://www.infotech.monash.edu.au/

Abstract. This paper surveys hybrid algorithms from a constraint pro-
gramming perspective. It introduces techniques used within a construc-
tive search framework, such as propagation and linear relaxation, as well
as techniques used in combination with search by repair.

Keywords: constraint programming, hybrid algorithms, search.

1 Introduction

1.1 Tribes

There are three research communities exploring combinatorial optimisation prob-
lems. Within each community there is strong debate and ideas are shared natu-
rally. Between the communities, however, there is a lack of common background
and limited cross-fertilisation.

We belong to one of those communities: the CP community.! The other two
are Mathematical Programming (MP) and Local Search and meta-heuristics
(LS). Currently LS seems to be the largest of the three. It has become clear that
such a separation hampers progress towards our common goal, and there should
be one larger community - whose name is a point of contention - which should
include us all.

Hybrid algorithms lie at the boundary between CP, MP and LS. We will ex-
plore some of the techniques used in MP and LS, and show how they can be used
in conjunction with CP techniques to build better algorithms. We will not here
be investigating the “frontiers of research” in these communities. However it is
my belief that CP can contribute right now at these frontiers. Hybrid techniques
are not peripheral to the research of any of these communities. They are the key
to real progress in all three.

1.2 Overview

Firstly we explore the mapping of problems to algorithms, the requirement for
problem decomposition, and the need for linking solvers and solver cooperation.

' There are also, of course, many people in the CP community who are not exploring
combinatorial optimisation problems.

F. Azevedo et al. (Eds.): CSCLP 2006, LNAI 4651, pp. 1-32, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 M. Wallace

Different ways of linking solvers will be discussed, and some of their benefits and
applications.

Secondly we will investigate different kinds of search, coming from the different
communities, and see how they can be used separately, and together.

The paper is presented from a CP viewpoint, aimed at a CP audience. How-
ever, the objective is to lower the barrier to exploiting hybrid techniques, encour-
aging research at the boundaries of CP, MP and LS, and finally to help bring
these communities together.

2 Hybrid Constraint Solving

2.1 The Conceptual Model and the Design Model

To solve a problem we start with a problem-oriented conceptual model. The
syntax of conceptual models is targeted to clarity, expressive power and ease of
use for people interested in solving the problem.

The conceptual model is mapped down to a design model which is machine-
oriented [Ger01]. The design model specifies the algorithm(s) which will be used
to solve the problem at a level that can be interpreted by currently implemented
programming platforms, like ECLiPSe [AWO06].

The CP community usually separates the model from the search strategy. The
design model in our terminology includes both a model with variables and con-
straints and a search strategy. The variables and constraints in the design model
are chosen so as to be easy to solve, and to fit with the search routine. Moreover
with each constraint in the design model solving methods are specified which as-
sociate a behaviour with the constraint. Though the variables and constraints in
the design model of a problem may be quite different from those in its conceptual
model, they are logically equivalent - they represent the same set of solutions.
In principle, the conceptual modeling language could be a subset of the design
modeling language.

Real problems are complex and, especially, they involve different kinds of con-
straints and variables. For example a “workforce scheduling” problem [AAH95]
typically involves the following decision variables:

For each task, one or more employees assigned to the task.

— For each task, a start time

— For each (group of) employee(s), a route that takes them from task to task.
— For each (group of) employee(s), shift start, end, and break times

This is in sharp contrast to typical CSP puzzles and benchmarks, such as
graph colouring, where all the variables are of the same “kind” and sometimes
even have the same initial domains.

The constraints and data in real problems are also diverse. The workforce
scheduling problem includes:

— Location and distance constraints on and between tasks
— Skills data and constraints on and between employees and tasks
— Time constraints on tasks and employee shifts

Hybrid Algorithms in Constraint Programming 3

Naturally there are many more constraints in real workforce scheduling problems
on vehicles, road speeds, equipment, team composition and so on.

The consequence is that the algorithm(s) needed to solve real problems are
typically hybrid. The skills constraints are best solved by a different
sub-algorithm from the routing constraints, for example.

2.2 Mapping from the Conceptual to the Design Model

To map a problem description to an algorithm, it is often necessary to decompose
the whole problem into parts that can be efficiently solved. The challenge is to
be able to glue the subproblem solutions together into a consistent solution to
the whole problem. Moreover, for optimisation problems, it is not enough to find
the optimal solution to each subproblem. Glueing these “local” optima together
does not necessarily yield a “global” optimum.

For these reasons we need to ensure that the subproblem algorithms cooperate
with each other so as to produce solutions that are both consistent with each
other and, as near optimal as possible. The design of hybrid algorithms that meet
these criteria is the topic of this section.

In principle we can map a conceptual model to a design model by

— Associating a behaviour, or a constraint solver, with each problem constraint
— Adding a search algorithm to make up for the incompleteness of the con-
straint solvers

In practice the design model produced by any such mapping is strongly influ-
enced by the particular choice of conceptual model. The “wrong” conceptual
model could make it very hard to produce an efficient algorithm to solve the
problem.

For this reason we must map a given conceptual model to an efficient design
model in two steps:

— Transform the conceptual model into another one that is more suitable for
mapping
— Add constraint behaviour and search, to yield an efficient design model

The first step - transforming the conceptual model - is an art rather than a
science. It involves four kinds of transformations:

— Decomposition - separating the constraints and variables into subproblems

— Transformation - rewriting the constraints and variables into a form more
suitable for certain kinds of solving and search

— Tightening - the addition of new constraints whose behaviour will enhance
efficient problem solving

— Linking - the addition of constraints and variables that will keep the separate
subproblem solvers “in step” during problem solving

The decomposition is germane to our concerns. It is therefore worth discussing
briefly here. Firstly, we note that the decomposition covers the original problem

4 M. Wallace

(of course), but it is not a partition: otherwise the subproblems would have no
link whatsoever between them.

Therefore some subproblems share some variables.? Each subproblem solver
can then make changes to a shared variable, which can be used by the other
solver. Sometimes constraints are shared by different subproblems. In this case
the same constraint is handled multiple times by different solvers, possibly yield-
ing different and complementary information within each solver. When the con-
straints in different subproblems are transformed in different ways, the result is
that the same constraint may appear several times in several different forms in
the transformed conceptual model. We shall see later a model with a resource
constraint that is written three different ways for three different solvers.

We shall now move on to examine design models for a variety of hybrid
algorithms.

3 Constraint Solvers

In this section we discuss different constraint solvers, and constraint behaviours.

We investigate what kinds of information can be passed between them, in differ-

ent hybrid algorithms, and how their cooperative behaviour can be controlled.
The solvers, and constraint behaviours, we will cover are

— Finite domain (FD) constraint propagation and solving
— Global constraints and their behaviour

— Interval constraints, and bounds propagation

— Linear constraint solving

— Propositional clause (SAT) solving

— Set constraint solving

— One-way constraints (or “invariants”)

Referring back to the three research communities, we can relate these solvers
to the CP and MP communities. Accordingly this work lies on the border of CP
and MP. The hybrids on the border of CP and LS will be explored in the next
section.

3.1 Modelling Requirements for Constraint Solvers

Supposing a constraint C appears in the conceptual model and it is to be handled
by a particular solver, say FD. Then the design model must express a number
of requirements.

Firstly it must associate an initial domain which each of the variables in em C.
For the solver FD, the initial domains are discrete, and finite. For other solvers,

% This is a simplification. For example mathematical decomposition techniques such
as Lagrangian relaxation and column generation use more sophisticated techniques
than shared variables to relate the subproblems and the master problem. These will
be discussed in sections 4.2 and 5.1 below.

Hybrid Algorithms in Constraint Programming 5

such as SAT or linear, they must be initialised as booleans, or reals as required
by the solvers.

Secondly the constraint should be explicitly associated with a particular
solver. It may also be associated with more than one solver - and this is the
subject of section 4 below.

Thirdly its activation conditions must be specified. A constraint can be ac-
tivated by simply sending it to the solver, so that it is automatically handled
whenever the solver is invoked, or by explicitly introducing conditions under
which it should be woken. For an almost linear constraint, for example, which
includes a few non-linear expressions, the constraint might only be woken and
sent to the linear solver once all its expressions have become linear. The most
common use of explicit waking is for propagation constraints, discussed in the
following subsection.

No further specification about the constraints themselves need be given in the
design model. Details about what information is passed to the constraint before
solving it, and what information is extraced from the constraint after solving it
is a property of the solver, rather than the individual constraint.

In principle, when there is a single search routine with a current state, the
solvers communicate two key types of information to the state:

1. Satisfiability or inconsistency
2. Variable values

Other information can be extracted from the different solvers by explicit requests
expressed in the design model. Variable values are also, typically, passed from
the search state to the solvers. Thus when one solver, say FD, instantiates a
variable, this information is made available to all the other solvers.

3.2 Constraints Which Propagate Domain Information

Information Exported. We first consider finite domains and global FD con-
straints. The relevant issues for hybrid algorithms are

— what information can be extracted from the solver

— under what conditions all the information has been extracted from the solver:
i.e. the extracted information entails the constraint, so can we be sure that
a state which appears to be feasible for the other subproblems and their
solvers is also guaranteed to be consistent with the FD solver.

The answers are as follows:

— Information that can be extracted from the solver includes upper and lower
bounds on the variables, domain size and if necessary precise information
about which values are in the domain of each variable. The solver also reports
inconsistency whenever a domain becomes empty.

— All the information has been extracted from a constraint when it is entailed
by the current (visible) domain information. An FD solver can sometimes

6 M. Wallace

detect when this is the case and “kill” the constraint. Until then, the con-
straint is still “active”. Therefore active constraints are ones which, to the
FD solver’s knowledge, are not yet entailed by the domains of the variables.
Some FD solvers don’t guarantee to detect this entailment until all the vari-
ables have been instantiated. Many FD solvers support reified constraints,
which have a boolean variable to flag entailment or disentailment (inconsis-
tency with the current variable domains).

The domain, inconsistency and entailment information are all logical conse-
quences of the FD constraints and input variable domains. For this reason, no
matter what other constraints in other subproblems are imposed on the vari-
ables, this information is still correct. In any solution to the whole problem, the
values of the FD variables must belong to the propagated domains. Inconsistency
of the subproblem, implies inconsistency of the whole problem. If the variable
domains entail the subproblem constraints, then they are still entailed when the
constraints from the rest of the problem are considered.

Global Constraints. Notice that global constraints are often themselves im-
plemented by hybrid techniques, even though the information imported and
exported is restricted to the above. For example a feasible assignment may be
recorded internally, so as to support a quick consistency check, or to speed up
the propagation algorithm. An interesting case of hybridisation is the use of con-
tinuous variables in global constraints. The classic example is a global constraint
for scheduling, where resource variables are FD, but the task start time variables
could be continuous. As far as I know the hybrid discrete /continuous scheduling
constraint is not yet available in any CP system.3

Interval Constraints. For interval constraint solvers only upper and lower
bounds, and constraint entailment are accessible. The problem with continu-
ous constraints is that they are not necessarily instantiated during search. Since
continuous variables can take infinitely many different values, search methods
that try instantiating variables to all their different possible values don’t neces-
sarily terminate. Instead search methods for continuous values can only tighten
the variable’s bounds, until the remaining interval associated with the variable
becomes “sufficiently” small.

Not all values within these small intervals are guaranteed to satisfy all the
constraints. Indeed there are common cases where, actually, there are no feasible
solutions, even though the final intervals appear prima facie compatible. One
vivid example is Wilkinson’s problem (quoted in [Van98]). It has two constraints:
12, (X +i)+ Px X' = 0 and X € [-20.4.. —9.4]. When P = 0 the constraints
have 11 solutions (X = —10...X = —20), but when P differs infinitesimally
from 0 (viz. P = 2723), it has no solutions!

For these reasons “answers” returned by search routines which associate small
intervals with continuous variables are typically conjoined with a set of undecided
constraints, which must be satisfied in any solution.

3 Cp scheduling will be covered in more detail later.

Hybrid Algorithms in Constraint Programming 7

3.3 Linear Constraints

Underlying Principles. A linear constraint solver can only handle a very
restricted set of constraints. These are linear numeric constraints that can be
expressed in the form Expr > Number or Expr < Number. The expression
on the left hand side is a sum of linear terms, which take the form Coefficient
x Variable. The coefficients, and the number on the right hand side, are either
integers or real numbers [Wil99).

Linear constraint solvers are designed not only to find feasible solutions, but
also to optimise against a cost function in the form of another linear expression.

In the examples in this chapter we shall typically write the linear constraints
in the form Exzpr > Number, and assume that the optimisation direction is
minimisation.

Whilst much less expressive than CP constraints, they have a very important
property: any set of linear constraints, over real variables, can be tested for global
consistency in polynomial time. This means we can throw all the linear constraint
of a problem into the linear solver and immediately determine whether they are
consistent.

By adding just one more kind of constraint, an integrality constraint that
requires a variable to take only integer values, we can now express any problem in
the class NP. (Of course the consistency problem for mixed linear and integrality
constraints - termed MIP, for “Mixed Integer Programming” - is NP-hard).

The primary information returned by the linear solver is consistency or incon-
sistency among the set of linear constraints. However for building cooperative
solvers we will seek more than this.

Firstly the solver can also export an optimal solution - assuming throughout
this section that the cost function is linear. In general there may be many optimal
solutions, but even from a single optimum we now have a known optimal value
for the cost function. No matter how many other constraints there may be in
other solvers, the optimal value cannot improve when they are considered, it can
only get worse. Thus the linear solver returns a bound on the cost function.

Linear constraints are special because if S1 and Sy are two solutions (two
complete assignment that satisfy all the linear constraints), then any assignment
that lies on the line between S; and Sy is also feasible. For example if X =1,
Y =1is asolution, and sois X =4 and Y = 7, then we can be sure that X = 2
and Y = 3 is a solution, and so is X = 3 and Y = 5. Moreover since the cost
function is linear, the cost of any solution on the line between S1 and S2 has a
cost between the cost of S1 and the cost of S2.

These properties have some important consequences. Supposing Fxpr >
Number is a constraint, and that at the optimal solution the value of Expr
is strictly greater than Number. Then the problem has the same optimal value
even if this constraint is dropped (or “relaxed”). Otherwise you could draw a line
between a new optimal solution and the old one, on which all points are feasible
for the relaxed problem. Moreover the cost must decrease continuously towards
the new optimum solution. Therefore at the point where this line crosses the line
Exzpr = Number (i.e. at the first point where the solution is also feasible for the

