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PREFACE

Perhaps it’s not so surprising that when we (the authors) were learning math-
ematics, we thought that we were being taught some well-known facts — facts
that had been around forever. It wasn’t until later that we started to understand
that these facts (the word “theorem”™ was beginning to become part of our vo-
cabulary) had not been around forever and that people had actually discovered
these facts. Indeed, names of people were becoming part of the discussion.

Mathematics has existed for many centuries. In the ancient past, certain
cultures developed their own mathematics. This was certainly the case with
Egypt, Babylonia, Greece, China, India, and Japan. In recent centuries, there
has become only one international mathematics. It has become more organized
and has been divided into more clearly defined areas (even though there is sig-
nificant overlap). While this was occurring, explanations (proofs) as to why
mathematical statements are true were becoming more structured and clearly
written.

The goal of this book is to introduce undergraduates (and perhaps some high
school students as well) to the mathematical arca called graph theory, which only
came into existence during the first half of the 18th century. This area didn’t
start to develop into an organized branch of mathematics until the second half
of the 19th century, and there wasn’t even a book on the subject until the first
half of the 20th century. Since the second half of the 20th century, however, the
subject has exploded.

It is our intent to describe some of the major topics of this subject to you
and to inform you of some of the people who helped develop and shape this
area. In the beginning, most of these people were just like you — students who
enjoyed mathematics but with a great sense of curiosity. As with everything else
(though not as often talked about), mathematics has its non-serious side and
we've described some of this as well. Even the most brilliant mathematicians
don’t know everything and we’ve presented some topics that have not been well-
studied and in which the answers (and even the questions) are not known. This
will give you the chance to do some creative thinking of your own. In fact, maybe
the next person who will have an influence on this subject is you.

Part of what makes graph theory interesting is that graphs can be used to
model situations that occur within certain kinds of problems. These problems
can then be studied (and possibly solved) with the aid of graphs. Because of this,
graph models occur frequently throughout this textbook. However, graph theory
is an arca of mathematics and consequently concerns the study of mathematical
ideas — of concepts and their connections with each other. The topics and results
we have included were chosen because we feel they are interesting, important
and/or are representative of the subject.

As we said, this text has been written for undergraduates. Keeping this in
mind, we have included a proof of a theorem if we believe it is appropriate,
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the proof technique is informative, and if the proof is not excessively long. We
would like to think that the material in this text will be useful and interesting
for mathematics students as well as for other students whose areas of interest
include graphs. This text is also appropriate for self-study.

We have included three appendixes. In Appendix 1, we review some impor-
tant facts about sets and logic. Appendix 2 is devoted to equivalence relations
and functions, while Appendix 3 describes methods of proof. Knowing that un-
dergradnates are still in the process of mastering proofs, we have indicated at
the beginning of each proof, the proof technique (or techniques) we are using.
We understand how frustrating it is for students (or anyone!) who try to read a
proof that is not reader-friendly and which leaves too many details for the reader
to supply. Consequently, we have endeavored to give clear, well-written proofs.

Although this can very well be said about any arca of mathematics or indeed
about any scholarly activity, we feel that appreciation of graph theory is enhanced
by being familiar with many of the people, past and present, who were or are
respounsible for its development. Consequently, we have included several remarks
that we find interesting about some of the “people of graph theory”. Since we
believe that these people are part of the story that is graph theory, we have
discussed them within the text and not simply as footnotes. We often fail to
recognize that mathematics is a living subject. Graph theory was created by
people and is a subject that is still evolving.

There are several sections that have bheen designated as “Excursion™. These
can be omitted with no negative effect if this text is being used for a course. In
some cases, an Excursion is an area of graph theory we find interesting but which
the instructor may choose not to discuss due to lack of time or because it's not
one of his or her favorites. In other cases, an Excursion brings up a sidelight of
graph theory that perhaps has little. if any, mathematical content but which we
simply believe is interesting.

There are also sections that we have designated as “Exploration”. These
sections contain topics with which students can experiment and use their imag-
ination. These give students opportunities to practice asking questions. In any
case, we believe that this might be fun for some students.

As far as using this text for a course, we consider the first three chapters
as introductory. Much of this could be covered quite quickly. Students could
read these chapters on their own. It isn’t necessary to cover connectivity and
Menger's Theorem if the instructor chooses not to do so. Sections 8.3, 9.2. 10.3,
and 11.2 could casily be omitted; while material from Chapters 12 and 13 can
be covered according to the teacher’s interest.

Solutions or hints for the odd-numbered exercises in the regular sections of
the text, references, an index of mathematical terms, an index of people, and a
list of symbols are provided at the end of the text.

It was because of discussions that we had with Robert Ross, Executive Editor
at McGraw-Hill, that the idea to write this text was initiated. We thank him for
this and for his encouragement. We also thank others at McGraw-Hill for their
assistance, namely, Daniel Seibert, Editorial Assistant, and Vicki Krug, Senior
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Project Manager. In addition, we are most grateful to the reviewers who did a
tremendous job and who gave us numerous valuable suggestions: Jay Bagga, Ball
State University; Richard Borie, University of Alabama; Anthony Evans, Wright
State University; Mark Ginn, Appalachian State University; Mark Goldberg,
Rensselaer Polytechnic Institute; Arthur Hobbs, Texas A&M University; Garth
[saak, Lehigh University; Daphne Liu, California State University, Los Angeles;
Alan Mills, Tennessee Technological University; Dan Pritikin, Miami University;
John Reay, Western Washington University; Yue Zhao, University of Central
Florida.

Gary Chartrand and Ping Zhang
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Chapter 1

Introduction

1.1 Graphs and Graph Models

A major publishing company has ten editors (referred to by 1,2,...,10) in the
scientific, technical, and computing areas. These ten editors have a standard
meeting time during the first Friday of every month and have divided them-
selves into seven committees to meet later in the day to discuss specific topics of
interest to the company, namely, advertising, securing reviewers, contacting new
potential authors, finances, used copies and new editions, competing textbooks,
and textbook representatives. This leads us to our first example.

Example 1.1 The ten editors have decided on the seven committees: ¢; =
{1,2,3}, 2 = {1,3,4,5}, 3 = {2,5,6,7}, ca = {4,7,8,9}, 5 = {2,6,7}, cg =
{8,9,10}, ¢z = {1,3,9,10}. They have set aside three time periods for the seven
committees to meet on those Fridays when all ten editors are present. Some
pairs of committees cannot meet during the same period because one or two of
the editors are on both committees. This situation can be modeled visually as
shown in Figure 1.1.

(&]

Cs Cy

Figure 1.1: A graph
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In this figure, there are seven small circles, representing the seven committees
and a straight line segment is drawn between two circles if the committees they
represent have at least one committee member in common. In other words, a
straight line segment between two small circles (committees) tells us that these
two committees should not be scheduled to meet at the same time. This gives
us a picture or a “model” of the committees and the overlapping nature of their
membership. O

What we have drawn in Figure 1.1 is called a graph. Formally, a graph G
consists of a finite nonempty set V of objects called vertices (the singular is
vertex) and a set F of 2-element subsets of V' called edges. The sets V and
E are the vertex set and edge set of G, respectively. So a graph G is a pair
(actually an ordered pair) of two sets V and E. For this reason, some write
G = (V,E). At times, it is useful to write V(G) and E(G) rather than V and
E to emphasize that these are the vertex and edge sets of a particular graph G.
Although G is the common symbol to use for a graph, we also use F' and H as
well as G', G and G, G», etc. Vertices are sometimes called points or nodes
and edges are sometimes called lines. Indeed, there are some who use the term
simple graph for what we call a graph. Two graphs G and H are equal if
V(G)=V(H) and E(G) = E(H), in which case we write G = H.

It is common to represent a graph by a diagram in the plane (as we did in
Figure 1.1) where the vertices are represented by points (actually small circles —
open or solid) and whose edges are indicated by the presence of a line segment
or curve between the two points in the plane corresponding to the appropriate
vertices. The diagram itself is then referred to as a graph. For the graph G of
Figure 1.1 then, the vertex set of G is V(G) = {c1,¢2, -+, 7} and the edge set
of G is

E(G) = {{a,co},{ca.cs}. {c1,e5}, {er,er}, {e2, 3}, {ca, ca}, {ca, 7},

{(331 64}7 {037 05}7 {647 ("5}7 {047 CG}'/ {C4= C7}7 {C67 ("7}}'

Let’s consider another situation. Have you ever encountered this sequence of
integers before?

1,1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Every integer in the sequence is the sum of the two integers immediately preced-
ing it (except for the first two integers of course). These numbers are well-known
in mathematics and are called the Fibonacci numbers. In fact, these integers
occur so often that there is a journal (The Fibonacci Quarterly, frequently pub-
lished five times a year!) devoted to the study of their properties. Our second
example concerns these numbers.

Example 1.2 Consider the set § = {2,3,5,8,13,21} of six specific Fibonacci
numbers. There are some pairs of distinct integers belonging to S whose sum
or difference (in absolute value) also belongs to S, namely, {2,3}, {2,5}, {3,5},
{3,8}, {5,8}, {5,13}, {8,13}, {8,21}, and {13,21}. There is a more visual way
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of identifying these pairs, namely, by the graph H of Figure 1.2. In this case,
V(H) ={2,3,5,8,13,21} and

E(H) = {{2,3},{2,5},{3,5}. {3.8}, {5.8}, {5, 13}, {8,13}, {8,21}, {13.21}}. O

21 2

Figure 1.2: Another graph

When dealing with graphs, it is customary and simpler to write a 2-element
set {u,v} as wv (or vu). If wv is an edge of G, then u and v are said to be
adjacent in G. The number of vertices in G is often called the order of G,
while the number of edges is its size. Since the vertex set of every graph is
nonempty, the order of every graph is at least 1. A graph with exactly one
vertex is called a trivial graph, implying that the order of a nontrivial graph
is at least 2. The graph G of Figure 1.1 has order 7 and size 13, while the
graph H of Figure 1.2 has order 6 and size 9. We often use n and m for the
order and size, respectively, of a graph. So, for the graph G of Figure 1.1, n =7
and m = 13; while for the graph H of Figure 1.2, n =6 and m = 9.

A graph G with V(G) = {u,v,w.z,y} and E(G) = {uv, vw, vw, ve, wr, xy}
is shown in Figure 1.3(a). There are occasions when we are interested in the
structure of a graph and not in what the vertices are called. In this case, a
graph is drawn without labeling its vertices. For this reason, the graph G of
Figure 1.3(a) is a labeled graph and Figure 1.3(b) represents an unlabeled
graph.

(b)

Figure 1.3: A labeled graph and an unlabeled graph
Let us now turn to yet another situation.
Example 1.3 Suppose that we have two coins, one silver and one gold, placed

on two of the four squares of a 2 x 2 checkerboard. There are twelve such
configurations, shown in Figure 1.4, where the shaded coin is the gold coin.
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e ® °® @ o|e®

(@] (@] ©) O O|e
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°® ° ° ® e|O
C7 &) Cg C10 C11 €12

Figure 1.4: Twelve configurations

A configuration can be transformed into other configurations according to
certain rules. Specifically, we say that the configuration ¢; can be transformed
into a configuration c¢; (1 < 4,5 < 12,¢ # j) if ¢; can be obtained from ¢; by
performing exactly one of the following two steps:

(1) moving one of the coins in ¢; horizontally or vertically to an unoccupied
square;
(2) interchanging the two coins in c¢;.
Necessarily, if ¢; can be transformed into ¢;, then ¢; can be transformed into ¢;.
For example, co can be transformed into (i) ¢; by shifting the silver coin in ¢y to
the right, (ii) c4 by shifting the gold coin to the right, or (iii) cg by interchanging
the two coins (see Figure 1.5).

®
Co . o
= v N
o o O
@] e} ®
c1 Cq &

Figure 1.5: Transformations of the configuration ¢,

Now consider the twelve configurations shown in Figure 1.4. Some pairs ¢;,
c; of these configurations, where 1 < 4,5 < 12, 4 # j, can be transformed into
each other, and some pairs cannot. This situation can also be represented by a
graph, say by a graph F' where V(F) = {cy,¢2,...,c12} and ¢;¢; is an edge of
F if ¢; and ¢; can be transformed into each other. This graph F is shown in
Figure 1.6. O

Let’s look at a somewhat related example.

Example 1.4. Suppose that we have a collection of 3-letter English words, say

ACT, AIM, ARC, ARM, ART, CAR, CAT, OAR, OAT, RAT, TAR.
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12

Figure 1.6: Modeling transformations of twelve configurations

We say that a word W; can be transformed into a word Wy if W5 can be obtained
from W; by performing exactly one of the following two steps:

(1) interchanging two letters of Wy;
(2) replacing a letter in Wi by another letter.

Therefore, if W can be transformed into W5, then W5 can be transformed into
W,. This situation can be modeled by a graph G, where the given words are the
vertices of G and two vertices are adjacent in G if the corresponding words can
be transformed into each other. This graph is called the word graph of the
set of words. For the 11 words above, its word graph G is shown in Figure 1.7.

ARC
AIM  ARM
o

RAT TAR
ART
G- OAT
OAR
ACT CAT CAR

Figure 1.7: The word graph of a set of 11 words

In this case, a graph G is called a word graph if G is the word graph of some
set S of 3-letter words. For example, the (unlabeled) graph G of Figure 1.8(a) is
a word graph because it is the word graph of the set S = {BAT, BIT, BUT, BAD,
BAR, CAT, HAT}, as shown in Figure 1.8(b). (This idea is related to the concept
of “isomorphic graphs”, which will be discussed in detail in Chapter 3.) &

We conclude this section with one last example.
Example 1.5 Figure 1.9 shows the traffic lanes at the intersection of two busy

streets. When a vehicle approaches this intersection, it could be in one of the
nine lanes: L1, L2, ..., L9.
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BIT BUT
R

BAT
G - BAD CAT
BA HAT
)

(a (b)
Figure 1.8: A word graph

L9!'L8

i

J L7
L1 L6
__________ I %
L2
___________ |
L3 '—\l |
v (3] ],
ol
O| L4 L5

Figure 1.9: Traffic lanes at street intersections

This intersection has a traffic light that informs drivers in vehicles in the
various lanes when they are permitted to proceed through the intersection. To
be sure, there are pairs of lanes containing vehicles that should not enter the
intersection at the same time, such as L1 and L7. However, there would be
no difficulty for vehicles in L1 and L5 to drive through this intersection at the
same time. This situation can be represented by the graph G of Figure 1.10,
where V(G) = {L1, L2, ..., L9} and two vertices (lanes) are joined by an edge if
vehicles in these two lanes cannot safely enter the intersection at the same time,
as there would be a possibility of an accident. &

What we have just seen is how five different situations can be represented by
graphs. Actually, in each case, there is a set involved: (1) a set of committees;
(2) a set of integers, (3) a set of configurations consisting of two coins on a 2 x 2
checkerboard, (4) a set of 3-letter words, and (5) a set of traffic lanes at a street
intersection. Certain pairs of elements in each set are related in some manner: (1)
two committees have a member in common; (2) the sum or difference (in absolute
value) of two integers in the set also belongs to the set; (3) two configurations
can be transformed into each other according to some rule; (4) two 3-letter words
can be transformed into each other by certain movements of letters; and (5) cars
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L6 L5

Figure 1.10: The graph G in Example 1.5

in certain pairs of traffic lanes cannot enter the intersection at the same time.
In cach case, a graph G is defined whose vertices are the elements of the set and
two vertices of G are adjacent if they are related as described above. The graph
G then models the given situation. Often questions concerning the situations
described above arise and can be analyzed by studying the graphs that model

them.

Exercises for Section 1.1

1.1

1.3

1.4

1.6

C

What is a logical question to ask in Example 1.17 Answer this question.

Create an example of your own similar to Example 1.1 with nine editors
and eight committees and then draw the corresponding graph.

Let S = {2.3,4,7,11,13}. Draw the graph G whose vertex set is S and
such that ij € E(G) fori,je Sifi+j€ Sorl|i—jl€S.

Let S = {-6,-3,0,3,6}. Draw the graph G whose vertex set is S and
such that ij € E(G) fori,je Sifi+je Sorl|i—jles.

Create your own set S of integers and draw the graph G whose vertex set
is S and such that ij € E(G) if i and j are related by some rule imposed
on i and j.

Consider the twelve configurations ¢y, co, ..., c12 in Figure 1.4. For every
two configurations ¢; and ¢, where 1 <. j < 12,7 # j, it may be possible
to obtain ¢; from ¢; by first shifting one of the coins in ¢; horizontally or
vertically and then interchanging the two coins. Model this by a graph F
such that V(F) = {¢|.c2.....c12} and ¢;c; is an edge of F if ¢; and ¢; can
be transformed into each other by this 2-step process.
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1.7 Following Example 1.4,

(a) give an example of ten 3-letter words, none of which are mentioned
in Example 1.4, and whose corresponding word graph has at least six
edges. Draw this graph.

(b) give a set of five 3-letter words whose word graph is shown in Fig-
ure 1.11 (with the vertices appropriately labeled).

o—o0—0—0—20
Figure 1.11: The graph in Exercise 1.7(b)

(c) give a set of five 3-letter words whose word graph is shown in Fig-
ure 1.12 (with the vertices appropriately labeled).

Figure 1.12: The graph in Exercise 1.7(c)

1.8 Let S be a finite set of 3-letter and/or 4-letter words. In this case, the
word graph G(S) of S is that graph whose vertex set is S and such that
two vertices (words) w; and ws are adjacent if either (1) or (2) below
oceurs:

(1) one of the words can be obtained from the other by replacing one
letter by another letter,

(2) w is a 3-letter word and wy is a 4-letter word, and ws can be obtained
from w; by the insertion of a single letter (anywhere, including the
beginning or the end) into w;.

(a) Find six sets S1,S2,...,56 of 3-letter and/or 4-letter words so that
for each integer i (1 <7 < 6) the graph G; of Figure 1.13 is the word
graph of S;.

(b) For another graph H (of your choice), determine whether H is a word
graph of some set.

Ty QK

Figure 1.13: The graphs for Exercise 1.8(a)



