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FUR GERTRUD



Franz kam sein Leben zwischen den Biichern unwirklich vor.
Er sehnte sich nach dem wirklichen Leben, nach Beriihrung
mit anderen Menschen, die an seiner Seite gingen. er
sehnte sich nach ihrem Geschrei. Es war ihm nicht klar.
daf} gerade das, was ihm unwirklich schien (die Arbeit in
der FEinsamkeit von Studierzimmer und Bibliothek), sein
wirkliches Leben war, wdhrend die Umzlige, die fir ihn die
Wirklichkeit darsteliten, nur Theater waren, ein Tanz, ein
Fest, mit anderen Worten ein Traum.

(Milan Kundera: Die unertridgliche Leichtigkeit des Seins)



INTRODUCTION

It is known since 40 years that a linear space has at least as many lines as
points with equality only if it is a generalized projective plane. This result of de
Bruijn and Erdods (1948) led to the conjecture that every linear space with "few
lines" can be obtained from a certain projective plane by changing only a small
part of its structure. It is surprising that it took more than 20 years until
Bridges (1972) showed that every linear space with b = v+1 # 6 (b the number of
lines, v the number of points) is a punctured projective plane. However, since
then many results have been obtained. It is the main purpose of this paper to
study systematically this embedding problem. In particular, we shall collect the old
results and present quite a few new ones. We shall, however, also study linear

spaces with few lines which have no natural embedding in a projective plane.

When studying finite linear spaces which have a chance to be embeddable in a
projective plane of order n, it is sensible to suppose that b £ n2+n+1 (which is
the number of lines in a projective plane of order n) and v 2 (n-1)2+(n-1)+2
= n2-n+2 (this is due to the fact that a projective plane of order n-1 has n2-n+1
points and such a plane is certainly not embeddable in a projective plane of

order n).

In the first chapter, we shall give the definitions and most of the notions
needed later. Also the most important examples of linear spaces which we shall
deal with are given. At the end of this chapter, the reader will find some basic

properties of linear spaces and (n+1,1)-designs.

Chapter 2 begins with a new proof of the theorem of de Bruijn and Erdﬁ\s. This
proof uses an easy algebraic method, which will be also useful in the proof of’
Totten's theorem in chapter 8. The inequality b 2 v has been improved by Erdés,
Mullin, So6s, and Stinson (1985) for non-degenerate linear spaces as follows. If n
is the unique integer satisfying n?-n+1 = (n-1)2+(n-1)+1 < v £ n2+n+1, then we

have
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n2+n-1, if v.= n?2-n+2 # 4
b =2 B(v) := n2+n, if n2-=n+3 < v € n24+1 or v = 4
n2+n+1, if n2+2 < v.

We conclude chapter 2 with a new proof of this result.

In chapter 3, basic properties and results of (n+1,1)-designs can be found.
We shall prove a theorem of Vanstone which says that any (n+1,1)-design with
4<n2<v and b =n2+n+1 can be embedded in a projective plane of order n, and

we shall also show that n2-n+2 < v < b < n2+n implies embeddability.

Now we are ready to study systematically non-degenerate linear spaces L with
v 2 n2-n+2 points and b £ n?2+n+1 lines. In chapter 4 we consider the case that
some point lies on at most n lines. We shall determine L except in the case where
v =n2-n+2 and b = n?+n+1. It turns out that L is one of a few exceptional linear
spaces or that L can be extended to a projective plane of order n. This result
implies that every point of a non—-degenerate linear space with n2+n+1 lines and
at least n2-n+3 points lies on at least n+1 lines, a consequence which will be

very helpful in the next chapters.

The results obtained up to here will now be used to determine all linear
spaces with the minimal possible number B(v) of lines. If n is the integer with
n?2-n+2 < v < n?2+n+1, then every non-degenerate linear L space with v points and
B(v) lines can be embedded in a projective plane of order n unless L is one
exceptional linear space with 8 points. This will be shown in chapter 5. We shall
also study linear spaces with n2-n+2 points and n2+n lines and obtain a classi-
fication of all linear spaces with n2-n+2 £ v<b < n2+n. Only two such linear
spaces can not be embedded in a projective plane of order n and both have 8
points.

In chapter 5 we will also determine all linear spaces with n?2-n+1 points and
n2+n lines for which every point has degree at least n+l1 and some point has
degree at least n+2, n % 4,9. It turns out that these spaces are related to a

complement of a Baer—-subplane in an affine plane.

In the following two chapters we consider linear spaces with n2+n+1 lines and

v 2 n2-n+2 points in which every point lies on at least n+1 lines.



We start with the very difficult case that every point lies on exactly n+1
lines. In chapter 3 we have already proved that v 2 n? implies embeddability. In
the last 15 years this bound has been improved many times, for example by Bose
and Shrikhande (1973), McCarthy and Vanstone (1977), and Dow (1982, 1983). We
shall improve all these bounds again by showing that as well v 2 n?-%n+6 as
v2n2-%WY5-1)n+ 17Y(n/5) implies embeddability.

In chapter 7, we assume that some point lies on more than n+1 lines. Because
such linear spaces can not be embedded in a projective plane of order n, it has
been conjectured that they do not exist. However, we shall construct an infinite
class of counterexamples. Such a counterexample has at most n2+1-vyn points with
equality if it is the closed complement of a Baer—subplane in a projective plane of
order n. In chapter 7 we shall show that these are essentially the only examples
for v > n2+‘1—'r<zn. Since they can not be embedded in a projective plane of order n,
we obtain the optimal bound for the embedding of linear spaces in projective
planes of order n whenever n is the order of a projective plane having a Baer-

subplane.

Chapter 8 starts with a proof of Totten's classification of restricted linear
spaces (1976) (linear spaces satisfying (b-v)2< v). We shall improve this result
slightly by determining all linear spaces satisfying (b-v)2 < b. As corollaries we
obtain the classifications of linear spaces with b = v+1 of Bridges (1972), b = v+2
of de Witte (1976), and b = v+3 of Totten (1976). A consequence of the Theorem
of Totten is that every linear space satisfying v < n2+n+1 < b £ v+n is an inflated
affine plane of order n, that is an affine plane A of order n together with a
linear space with at most n+1 points which is imposed on some of the infinite
points of A. It seems likely that this results remains true if one weakens the
upper bound b < v+n for the number of lines. In the case that the number of
points is n2+n+1, Blokhuis, Schmidt, and Wilbrink (1988) showed that the condition
b £ n2+3n+1-4¥yn is strong enough. We shall sligthly improve this result in

chapter 9.

In chapter 10, we introduce a class of structures which we call L(n,d). By
definition an L(n,d), 1 £d €£n-1 is an (n+1,1)-design with n?-d points in which

every point lies on n lines of degree n and on a unique line of degree n—-d. We



shall see that this implies that there is an integer z such that z(n-d) = d(d-1)
and b = n2+n+z. It is easy to see that an L(n,d) is a punctured affine plane if
z =0 and the complement of a Baer-subplane in a projective plane if z=1. For
z 2 2 no examples are known and we give non-existence criteria. However even for
z 2 2 these (hypothetical) linear spaces are interesting from many points of view.
For example, if z 2 2, then we obtain the following characterization of an L(n,d)
with z(n-d) = d(d-1): Suppose L is a linear space with maximal point degree n+1
and b = n2+n+z. Then v £ n2-d and equality implies that L is an L(n.d).

Each L(n,d) gives rise to a closed L(n,d), which is a linear space with n?+n+z
lines and n2-d+1 points, and to a reduced L(n,d), which is a linear space with
n2-n+2 points, b = n2+n+z-1 lines, and a point of degree n. For z =2, these
structures will play a crucial role in the next two chapters. Suppose that n is a
positive integer and let d be the positive number defined by 2n =d(d-1). In
chapter 11, we prove that every linear space with n2+n+2 lines has at most
n2-d+1 points with equality if and only if it is a closed L(n,d), which implies
that d is an integer. In the next chapter we shall show that every linear space
with n2-n+2 points and n2+n+1 lines which has a point of degree n is a reduced
L(n,d) (which implies again that d is an integer) or one of a few exceptional

linear spaces. This result solves the unsettled case of chapter 4.

In chapter 13, we consider two particular cases. First, we shall prove that
every linear space with 13<v <b<21 is a near-pencil or can be embedded in
the projective plane of order 5. Then we show that every linear space satisfying
31 <v<b<43 is a near-pencil. This includes a new proof for the non-existence
of a projective plane of order 6, and the pseudo—-complement of an oval in a
projective plane of order 6. Our proof does not use any graph theoretical results

as did the original proof of de Witte (1977).

An interesting property of linear spaces was discovered by Hanani (1954/55):
Every line of maximal degree of a linear space with v points meets at least v-—1
other lines. In chapter 15 we prove the following generalisation. Suppose that c is
a non-negative integer. Then all but a finite number of linear spaces in which
every line of maximal degree meets at most v-1+c other lines can be obtained

from a projective plane by removing at most c¢ points or from an affine pane by
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removing at most c—1 points. The proof applies a very general embedding result,

which we give in chapter 14.

Another interesting property of linear spaces was conjectured by Dowling and
Wilson (see Erdés, Fowler, S6s and Wilson (1985)): If (p,L) is a non-incident
point-line pair of a linear space and if t is the number of lines through p which
miss L, then b 2 v+t. This generalization of the de Bruijn-Erdés Theorem was

proved in (Metsch, 1991c) and we shall present this proof in chapter 16.

In the last chapter we will be concerned with the uniqueness of embeddings. It
is conceivable that a linear space may be embedded in two different ways in the
same projective plane, or even that it can be embedded in two non-isomorphic
planes. We shall, moreover, show that all embeddings considered in this paper are

uniquely determined.

The first part of this paper was written while I was visiting the university of
Florence, Italy. I would like to thank Prof. A. Barlotti very much for his kind
hospitality.

I am very grateful to Prof. A. Beutelspacher, my thesis supervisor, for his help

and support in every situation, and I would also like to thank him very much.
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1. Definition and basic properties of linear spaces

In this section, we shall give the definitions of the geometrical structures
used in this paper. We shall also give examples and basic properties of linear
spaces. The most general structure we shall use is the incidence structure.

An incidence structure is a triple 1= (p,L,]) of a set p of points, a set L of
lines, and a set I of incidences satisfying

pNL =290 and I px L.

If (p,L) € I, then we say that the point p lies on the line L or that L passes

through p. If (p,L) ¢ I, then we say p does not lie on L or p is not a point of L.

Further geometric expressions explaining themselves are used.

We only consider incidence structures with a finite number of points and lines.
The number of points is denoted by v and the number of lines by b. The number
ke of points on a line L is called the degree of L and the number rp of lines
passing through a point p is called the degree of p. A k-line is a line of degree
k. The parameters of 1 are the number of points and lines, the degrees ri,...,rv of
the points, and the degrees ki,...,kb of the lines.

Two lines L and H are called parallel if L+ H and if L and H do not intersect.
A parallel class is a set T of lines such that every point lies on exactly one line
of T.

The incidence structure Ia = (L,p, {(L,p) | (p,L) € I}l) is called dual to I

An incidence structure I'=(p'L"'I) is said to be embedded in 1, if p'es p,
L's L, and I'sIN(p'xL). An isomorphism from 1 onto an incidence structure
I"=(p" L"I" is a bijection a from pUL onto p"UL" mapping points onto points and
lines onto lines such that (p,L) € I if and only if (a(p),a(L)) e I"

If M is a set of mutually parallel lines of I = (p,L,) and if « is a new’ symbol,
then I« M denotes the incidence structure (pUf{e},L, TU{(e,L) | L€ M}). We say that
I« M is the structure obtained from I, if we let the lines of M intersect in an
infinite point .

A v xb matrix C = (c1y) is called an incidence matrix of I if there are orders
pt,...,pv and Li,....Lb of the points and lines such that ciy=1 if p1 is a point of

Ly and ciy = 0 if not.



An incidence structure is called a partial linear space if any two distinct
points lie on at most one common line, every line has at least two points, and
there are at least two lines. A linear space is a partial linear space in which for
any two distinct points p and q there is a line pq through p and q. A linear
space which has a line passing through all but one of its points is called a near-
pencil, a degenerate linear space, or a degenerate projective plane. A linear space
which is not a near-pencil is called non-degenerate. A linear space with
(b-v)2 < v is called restricted, and a weakly restricted linear space is a linear
space satisfying (b-v)2 < b.

Since a line of a partial linear space L = (p,L,I) is uniquely determined by its
points, we shall identify a line with the set of its points. We write p e L instead
of (p,L) e I, and L = (p,L) instead of L= (p,L, ) where L is now seen as a set of
subsets of p. The point of intersection of two intersecting lines L and H is
denoted by LNH.

Let p' be a subset of p containing three non-collinear points. Then we can
define the linear space L'= (p'{LNp'| LeL, ILNp'l 2 2}) which is induced by L on
p'. If C:=p-p', then L' is called the complement of C in L and it is denoted by
L-C. Obviously, L-C is embedded in L. If L is a line of L with |ILNp'l =22, then
L':=LNp' is a line of L'. In general L and L' do not coincide as sets of points.
However, if no confusion is expected, then we identify L and L' as lines. E.g. if

p € L-L', then we call p a point of L' outside of L'.

(Partial) linear spaces with constant point degree n+1 occur verv often. It is
sometimes more comfortable to consider a little more general structure, the
(partial) (n+1,1)-designs. An incidence structure I with constant point degree n+l1
is called a partial (n+1,1)-design, if any two distinct points are contained in at
most one line, and an (n+1,1)-design. if any two distinct points p and g li’é on a
unique line pq. Notice that a line is not uniquely determined by the set of its
points. There may be two or more lines of degree 1 which contain the same point
p, and also lines of degree 0O are allowed. Even though we regard the set of lines

as a family of subsets of the set of points and we write p € L instead of (p,L) € I

A projective plane is a linear space P for which there is an integer n > 2

such that every point and line has degree n+1. The integer n is called the order



of P. It is easy to see that P has n?2+n+1 points and lines and that any two lines
of P intersect. A generalized projective plane is a near—-pencil or a projective
plane. An affine plane of order n is the complement of a line L in a projective
plane of order n. The n+1 points of L are called the infinite points of the affine
plane. It is known that a projective plane of order n exists whenever n is the
power of a prime.

Suppose that n = m? is a perfect square and that P is a projective plane of
order n with a Baer-subplane B = (q,T), i.e. B is a projective plane of order m
which is embedded in P. Then L := P-q is also called the complement of the Baer-
subplane B in the projective plane P. The lines of T, considered as lines of L,
form a parallel class of L. Le T is called the closed complement of B in P. It has
n?2-m+1 points and n2+n+1 lines. Furthermore, the point < has degree
ITI = n+yn+l.

Now suppose that n = m? is a perfect square and that A is an affine plane of
order n with a Baer-subplane B'= (q'T'), i.e. B' is an affine plane of order m
which is embedded in A. Then L':= A-q' is also called the complement of the
Baer-subplane B' in the affine plane A. Suppose that the lines of W', considered
as lines of L', form a parallel class of L' Then L'e T is called the closed
complement of B' in A. It has n?-n points and n2+n lines. Furthermore, the point
« has degree |T'| = n+vyn.

If C is the set consisting of the 2n+1 points of two lines of a projective

plane P, then P-C is called the complement of two lines in P.

Denote by C a class of linear spaces and call its elements C-spaces. Suppose
to every C(C-space L is assigned an order n such that the parameters of L depend
only on n. Then every linear space for which there is an integer n such that its
parameters can be expressed in the same form in terms of n is called a pseudo-
C-space (of order n).

For example, a pseudo-complement of two lines in a projective plane of order
n is a linear space with n2-n points of degree n+1, n—1 lines of degree n, and
n? lines of degree n-1. Notice that the definition does not imply that n is the

order of a projective plane.



An inflated affine plane D consists of an affine plane A together with a linear
space L imposed on some of its infinite points. That is, there is a projective plane
P =(p,L), a line L of P, a partition qiugz of the points of L, and a linear space
L = (qs,L") such that D= (p-qz, L'U{XN(p-q2) | X e L-{L}}) and A =P-L. We also
say that D is an affine plane of order n with L at infinity. If L is a near-pencil
or a projective plane, then D is called a projectively inflated affine plane, and if
D consists of all the infinite points of A, then it is called a complete inflated
affine plane. The structure obtained by removing one of the finite points of an

inflated affine plane is called an inflated punctured affine plane.

There is much more terminology for linear spaces. We do not want to give all
definitions, because most explain themselves. For example, a punctured projective
plane is a linear space which is obtained from a projective plane by removing one
of its points, and an affine plane with an infinite point is a linear space Ao T

where A is an affine plane and T is one of its parallel classes.

Now we know most of the linear spaces which occur in this work. There are a
few 'exceptional' spaces, which will be denoted by Ei,...,Ee. Instead of giving the
set of points and lines, we define them with the help of a picture. Points are
represented by little circles and a line is represented by a (not necessarily
straight) line which joins its points. However, we only give a picture of the partial
linear space E'j obtained by removing the lines of degree 2 from Ej, since Ej is

uniquely determined by E'j.




Es: v=8, b =13. E4: v=8, b=13
Es: v=6, b=28 Es: v=7, b=10
O~ -0
Ez: v=7,b=10 Ee: v=8, b=13
O <) O

The picture of our last exceptional space Es would already be too complicated.
It can be defined as follows. Consider the projective plane P = (p,L) of order 4,
and let Li, Lz, Lz and L4 be four lines of it which form a quadrilateral. Denote by
g the set of the seven points # LiNL4, L2NLa of LiULz, and by pi, pz, and ps the
three points # LiNL3,L2NLsz of the line Ls. Then we denote the linear space
(p-q, (L - {L1,Lz2,La}) U {{p1,p2},{p1,pal.{p2,psll) by Ea. It has 14 points and 21 lines
and a unique line of degree 5, which is the line La.

Some linear spaces have special names. The near-pencil on three points is
called the triangle. Tetrahedron is another name for the affine plane of order 2,

and the Fano plane is the projective plane of order 2. The Fano quasi-plane is



the tetrahedron with the triangle at infinity, which can be obtained from the
projective plane of order 2 by breaking up one of its lines into three lines of

degree 2. The linear space Es is called Lin's Cross.

Every incidence structure I = (p,L,]) satisfies the following basic equation

(B1) Srp = 3 K.
PED LelL

This is true, since both sides of the equation equal to |Il. This equation has a
lot of important consequences, which will be used throughout this paper.

For every linear space L = (p,L) we have

(B2) v(iv=1) = 3 ki(kc—1).
Le L

This follows from the basic equation for the incidence structure whose set of
points is P =1{(p,q) | p and q are distinct points of L}, whose lines are the sets
GL={p,q)e Pl p,qelLl, Le L and in which a point (p,q) lies on a line G if
p.q € L. Equation (Bz) refiects the fact that any two points of a linear space lie
on a unique line.

If p is a point of a linear space (p,L), then the equation (Bi) used for the

partial linear space (p—ip},iL€ L | p € L}) shows

(Bs) v-1 = Y (ki—1).
peL

This equation reflects the fact that the point p is joined to every other point by
a unique line.
Let L be a line of a linear space L = (p,L) and denote by M the set of lines

which are parallel to L. The basic equation (Bi1) used for (p—L,M) gives

(Ba) > (rp~ku) = Y ki,
péL Le M

since every point p outside of L lies in rp—kr lines parallel to L.

Obviously, the equations (Bi), (B2), (Bs), and (B4) also hold for (n+1,1)-designs.

Now we prove two easy lemmas, which will be used frequently throughout this

paper. We call them Transfer—-Lemma and Parallel-Lemma.



