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Volume T1: Final Processing 1
Chapter 1

INCINERATION

[. INTRODUCTION

A. Methods of Thermal Energy Recovery

Energy can be recovered directly from municipal solid waste (MSW) as heat, or the
waste can be processed into a storable fuel. Direct recovery is accomplished by mass
burning. Indirect recovery can take several forms and involve many different
procedures, each of which may be fitted into one of the three categories: physical,
thermal, and biological. In physical processing, the MSW is processed such that its
combustible and noncombustible fractions are separated one from the other. The
physical characteristics of the combustible fraction are further altered to enhance its
" utility as a fuel. The resulting combustible product commonly is termed “‘refuse-derived
fuel” or simply “RDF"". In thermal processing, usually termed ‘‘pyrolysis”, the goal is
to convert the waste almost entirely into a combustible gas. However, the usual
outcome is a collection of solid, liquid, and gaseous products that are more or less
combustible. The product from biological processing may be either gaseous or liquid,
depending upon the system used. Descriptions and discussions of biological and
thermal processing are presented in detail in other sections of this book.

Of the several thermal energy recovery processes, mass burning and RDF production
are regarded as having the greatest potential, even though several obstacles may
impede the attainment of the full realization of that potential. Some of the obstacles are
technical in nature; others are related to marketing. Both types of obstacles can be
overcome in part by using the heat energy to generate steam and then market it (steam)
off-site for the generation of electricity, for heating and cooling, or for a combination of
the two. However, such an approach is circumscribed by limitations that restrict its
application to only a few localities. Consequently, public officials, particularly in large
metropolitan areas, are forced to go on to the next potential solution, namely, on-site
generation of electricity. A difficulty attending the generation of electricity is that the
community or agency must construct a power plant and install transmission and
distribution equipment. In short, the community would have to assume the functions of
an electrical utility. Two alternatives to steam and electrical generation are (1) sell the
fuel (RDF) to individual customers for use in power generation by them; or (2) sell the
fuel to the lpcal utility. The first approach could prove to be quite costly. On the other
hand, with the second approach, not only would the utility benefit through the use of an
inexpensive fuel, the disposal problem would also be significantly lessened. However, it
should be noted that even though it would seem that utilities would be ideal users of
RDF, certain technical, economical, and institutional issues remain to be resolved
before the utilization becomes a common practice.

Incineration

The use of incineration as a means of disposing of municipal refuse is by no means a
recent one, as is attested by the fact that it was described as a viable and ongoing practice
in a book published in 1901.' The early interest in incineration stemmed from the fact
that in terms of disposal, a maximum volume or weight reduction could be achieved. In
the U.S. this early period of promise came to an all but complete end in the mid 1960s, a
time when extremely few of the early incinerators were as yet in operation. The
responsible problem was mainly one of an excessively large emission of particulates.
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However, it should be pointed out that the early popularity continued to be strong in
western European nations. A major contributing factor to the continuation of the
acceptance in Europe was the practice prevalent there of incorporating energy recovery
into the incineration process. A belated recognition of the energy potential of
incineration finally is bringing about a resurgence of interest in the practice in the U.S.
An important factor in this recognition is the realization of the continuing increase in
the heating value of refuse being brought about by a corresponding rise in the ratio of
plastics and paper to food preparation wastes and garden debris. In recent years, Japan
has taken the lead over Europe and the U.S. imrterms of numbers and capacities of
incinerators.

II. TECHNOLOGY

A. General Design Features

Key features of an incineration facility are (1) the tipping area; (2) the storage pit; (3)
the equipment for charging the incinerator (typically, a crane or a front-end loader); (4)
the combustion chamber; (5) the stack emission cleaning equipment; and (6) the boiler,
if energy is to be recovered.

In a typical incinerator operation, the municipal solid waste (MSW) is discharged
from collection vehicles either onto a tipping floor or directly into a storage pit. The pit
serves a twofold purpose: (1) It permits the storage of an amount of refuse sufficiently
large to ensure, if desired, a 24-hr/day, 7-day/week operation of the incinerator; and (2)
it provides an area where large noncombustible items can be removed, and the
remaining wastes can be blended into a fairly uniform and constant charge. The waste is
transferred from the pit to a charging hopper. The charging hopper is designed to
maintain‘a continuous feed of waste into the furnace. The waste falls from the hopper
into the furnace and onto the furnace stoker, where combustion takes place.

The furnace is the essential element of an incineration system. It may be rectangular
- or cylindrical in shape, and may consist of only one chamber or may have a primary and
asecondary chamber. The principal function of the secondary chamber is to provide the
conditions needed to complete the combustion process. The size and shape of the
furnace usually are determined by the manufacturer, and usually are based upon a
number of parameters, among which are solids and gas flow rates, residence time, and
bed depth. The temperature in the furnace commonly is maintained at roughly 900 to
1000°C.

A stoker is a series of grates provided with openings through which air can be passed.
Generally, grates are movable (vibrating, rocking, and reciprocating). The movement
of the grates serves to agitate the refuse and thereby promote combustion, as well as
ensure the removal of the residue from the furnace.

Air for combustion is forced into the furnace through and around the grates and
_ through the sides or through the roof. Air forced through and around the grates is
known as “underfire air”, and air forced through the sides and roof, not surprisingly,
bears the designation “‘overfire air”’. Overfire air typically is introduced through jets
positioned at specific points in the furnace. It is used to regulate combustion gases
driven off during the incineration of the refuse.? The flow of the air and combustion
gases is controlled by forced- and induced-draft fans to provide from 50 to 100% excess
combustion air. Air is forced into the furnace by means of forced-draft fans, whereas it
is drawn in by means of induced-draft fans. Both types of fans are used in modern
combustion units. Central overfire and underfire air is provided by the forced-draft
fans, and the flue gases are exhausted by the induced-draft fans.
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B. Classification

Incinerators may be classified on the basis of: (1) the recovery or nonrecovery of
energy; (2) the state in which the residue (e.g., slag and ash) emerges from the
combustion chamber; and (3) the shape and number of furnaces (e.g., rectangular and
multiple). Energy is recovered by way of the introduction of a waste heat boiler for
steam generation. Incinerators designed for energy recovery can be classified into
several groups. Of the types, the waterwall and the modular incinerators have been the
ones most used in the U.S.

III. WATERWALL INCINERATORS

The application of the waterwall furnace, originally developed for the combustion of
low-grade coal, was a response to the need for combustion chambers more efficient than
those of earlier refuse incinerators. The earlier incinerators were designed mainly for
disposal, and energy was a minor consideration. The inferior design together with the
relatively low heating value of refuse generated at that time resulted in a release of
thermal energy barely sufficient to complete the combustion of the wastes. On the other
hand, the design of the waterwall incinerator is such that combustion efficiency is
promoted and energy recovery is facilitated. Moreover, the incinerator can be readily
modified to minimize the emission of air pollutants.

The waterwall furnace began to come into use for incinerating urban wastes in the
early 1960s. Thereafter, its popularity spread rapidly throughout Europe with the result
that in the succeeding years several hundred units were built that were within a size
range of 120 to 1600 Mg/day (130 to 1800 TPD). In sharp contrast, only a few waterwall
incinerators have been built in the U.S. The popularity of the unit in Europe is due to a
number of factors, among which are lack of land suitable for land disposal, government
subsidies, availability of markets for steam, and relatively high costs of fossil fuels.

A. Description

The overall incineration system is essentially the same as that of a “‘conventional”
refractory-lined furance. The main difference in the system described herein is in the
furnace design. In this case, the walls of the furnace consist of closely spaced tubes
through which water circulates. The water circulating through the walls absorbs thermal
energy radiated from the burning wastes. The water cools the furnace walls and
simultaneously reduces the temperature of the exhaust gases, thus decreasing the
volume of flue gases to be treated. More energy is recovered from the combustion gases
in waste heat boilers by producing steam. Waterwall boilers can be designed to produce
high pressure, superheated steam. Air pollution control equipment typically used for
treating the waste gases includes wet scrubbers and electrostatic precipitators.

B. Performance

Certain key factors must be considered in an evaluation of the performance of an
incinerator, regardless of type. They include weight and volume reduction, composition
of flue gas, quantity and composition of residues, and boiler efficiency. With the data on
these factors it is possible to determine at what percent of capacity a unit is operating,
the temperature and pressure of steam being generated, the quantity of combustible
matter present in the residue, and the type and degree of treatment required for the
residues prior to final disposal.

Performance characteristics that may be expected of a waterwall furnace are
exemplified by those of the waterwall unit in the Nashville, Tennessee incineration
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facility.’ Data collected in the operation of the facility indicate that when it was operated
at full capacity (325 Mg/day (350 tons/day)), the steam production amounted to 49,000
kg/hr of 2525-kPa/300°C (107,000 Ib/hr of 366 psi/573°F) steam. This production was
equal to about 98% of the plant’s steam producing capacity, and a boiler efficiency of
about 72%. Refuse burned in the Nashville incinerator had an ‘“‘as-fired’” heating value
of about 11,600 J/g (5000 btw/1b), and was reduced in weight by slightly more than 78%.
According to the data on air emissions, the average uncontrolled particulate loading
was 3.35 g/Nm?® (1.46 g/dscf) at 12% CO,, and the NO, concentration in the flue gas, 146
ppm at 9.5% O,.

C. Problems

The design of a modern incineration facility has become a very complex undertaking
and can pose a number of problems. In particular, there are three potential problems
that must be given special attention. These are (1) system availability; (2) fouling of heat
transfer surfaces; and (3) corrosion.

The system availability of waterwall furnaces characteristicail, is only about 80%.
The limitation on availability is mainly a result of the need to freq: =ntiy clean out grates
that have become clogged with partially burned or noncombustible materials in the fuel.
The frequency of the downtimes necessitates a duplication of equipment (i.e., 100%
“standby’’). Thus, two 62- or 72-Mg/day waterwall units would be recommended for an
operation in which 91 Mg (100 tons) of refuse had to be burned per day. In addition, in
order to meet maximum reliability in the case of energy production, the furnace should
be capable of firing a fossil fuel.

Almost all of the heating surfaces are subject to fouling. This is caused by the
deposition of slag and fly ash. Research efforts, primarily on coal, have demonstrated
. that ash deposition can be alleviated by modifying the furnace design, by the
introduction of additives, and through the improvement and proper use of
boiler-cleaning equipment. Among the modifications in design are those geared to the
provision of sufficient volume and detention timc to achieve complete combustion of all
qombustible solids and gases, and of enough heat absorption by the furnace to dry the
ash before it comes in contact with the boiler tubes. The heat transfer surfaces in
convection passes, particularly those in the high-temperature zones, should have wide
spaces.

Corrosion is a major technical problem in the operaticn of refuse-fired boilers.
Basically three types of corrosion can take place: (1) corrosion due to the existence of a
reducing atmosphere; (2) halogen corrosion; and (3) low-temperature corrosion.

Corrosion caused by a reducing environment usually takes place in mass burning
facilities. It is precipitated by the products of partial combustion which are a
consequence of a reducing atmosphere. A reducing atmosphere may be a direct result
of poor distribution and stratification of air or fuel, or of both. These conditions could
promote the formation of carbon monoxide and hydrogen sulfide. The two gases can
react to remove the protective coating on the furnace tubes and expose the tubes to
additional corrosion.

Halogen corrosion is attributed largely to the combustion of Cl-containing materials
(e.g., PVC, NaCl) in the refuse. Although halogen corrosion has been recognized for
many years, a certain amount of disagreement exists as to the mechanism involved and
to the temperatures at which it takes place.

Points of low-temperature corrosion are those at which the flue gas comes in contact
with surfaces that have a temperature lower than the dew point of water vapor. HCl and
SO, dissolve in the water of condensation to form corrosive acids. Dew-point
temperatures may be encountered in air pollution control equipment, in air heaters,
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Table 1
MANUFACTURERS OF WATERWALL
INCINERATORS

European manufacturer U.S. representative/manufacturer
Von Roll (Zurich) Wheelabrator-Frye®
Josef Martin (Munich) Universal Oil Products®
Voklund (West Germany) Waste Management®
Voklund (West Germany) Trans Energy Systems*
Voklund (West Germany) Browning—Ferris Industries*

Babcox and Wilcox®
Combustion Engineering®
E. Keeler®

Foster Wheeler®

Zurn Energy Systems®
Riley Stoker®

Detroit Stoker®

@ Market complete systems.
b Market components only, e.g., boilers and stokers.

and in economizers. Low-temperature corrosion can, of course, pose a serious problem
when the boiler is taken out of service.

D. Manufacturers

Waterwall combustion systems and components are available from several
manufacturers in Europe and in the U.S. In Table 1 is a list of manufacturers in the U.S.
and of European manufacturers who have representatives in the U.S.

E. Types of Marketed Systems

The three types of waterwall combustion systems presently on the market are
distinguished from one another on the basis of the form in which the refuse is burned.
The form can be one of the following three (1) raw (“‘as-received”) refuse; (2) shredded
refuse; and (3) refuse derived fuel (RDF). In the first type, also known as “mass’’ or
“bulk” incineration, the raw or as-received municipal solid waste is dropped oato
moving grates which move the refuse through the furnace. Inert material falls off the
end of the stoker and is quenched with water. The cooled residue is then stored or
transported to a truck for final disposition. In the second system *‘as-received” MSW is
coarsely shredded and then is mechanically or pneumatically introduced into the
furnace and incinerated on a moving grate. This method of combustion is termed
“semisuspension firing’*, because the waste is ignited as it falls through the chamber
and, hopefully, its combustion is completed on the grate. A more extensive processing
of MSW results in the production (i.e., separation) of a light, combustible fraction,
which is the refuse-derived fuel or RDF described in another section. RDF can be used
directly in a boiler, or it can be used as a supplemental fuel in boilers especially designed
to fire coal, wood, or other biomass.

1. Units for Burning Unprocessed Refuse

Energy recovery from as-received refuse in waterwall incineration has the longest
record of application in that it has been used for over 20 years in the U.S. and Europe.
Prompted by the more or less successful records of the waterwall combustion'systems in
Europe, interest in the potential of the system for energy recovery is intensifying in the



