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INTRODUCTION

The volume contains the proceedings of the Workshop on Functional Analytic
Methods in Complex Analysis and Applications to Partial Differential Equations
held in Trieste, Italy, from 8 to 19 February 1988, at the International Centre for
Theoretical Physics of the International Atomic Energy Agency (Vienna, Austria)
and United Nations Educational, Scientific and Cultural Organization (Paris,
France) on the invitation of its Director, Professor Abdus Salam, and its Director of
Mathematics, Professor James Eells. The Workshop was directed by Professor
Dr. Wolfgang Tutschke (Martin Luther University, Halle, German Democratic
Republic) and Dr. Ali Seif Mshimba (University of Dar es Salaam, Tanzania). It had
been included in the ICTP 1988 programme on the initiative of Professor Eells.
The organization of the Workshop rested with the ICTP. The preparation for the
contents of the programme was graced through the support of Professor Dr. G.F.
Mandzhavidze (I.N. Vekua Institute for Applied Mathematics, Thbilissi State
University, U.S.S.R.).

Those who learned complex function theory from a usual lecture for mathemati-
cians or physicists could get the impression that this theory is closed in essence.
Such an impression could arise because many problems of complex function theory
are very natural, and, moreover, most of them are solved by standard methods and
formulated in natural theorems too. Thus one could get the impression that there
are no problems in complex function theory, so that could lead to a new furious
development of mathematics.

A deeper look at the continuous growth of problems and knowledge in mathema-
tics shows, however, that complex methods still play a significant role and contribute
to new ideas and results today. One important reason for a new revival of complex
analysis lies in the fact that the relations between complex analysis and the theory
of partial differential equations have been acquiring a new quality. Whereas the
applications of complex analysis to partial differential equations were side results in
the past, one of the main aims of complex analysis today is its systematic application
to general classes of partial differential equations. Such new tendencies were
started by S. Bergman’s theory of integral operators, LN. Vekau’s theory of
generalized analytic functions and L. Bers’ theory of pseudo-analytic functions.
The latter two theories are applicable to uniformly elliptic linear systems of first
order for two unknown real-valued functions in the plane. Enlarging these aims,
today the complex analysis is applicable to systems for more than two unknown
real-valued functions, to systems in R” and to nonlinear differential equations as
well.
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There are three aspects of this enlargement of the aims of complex analysis:
First it is possible to interpret the peculiarities of holomorphic functions as pro-
perties of solutions of special systems of partial differential equations. Secondly,
complex analysis becomes applicable to general classes of differential equations,
not only to special ones. And thirdly, the new general complex analysis is able to
construct solutions and to describe the properties of given solutions with the help
of solutions of corresponding problems for holomorphic functions. The third
aspect is significant, since in the case of nonlinear equations it essentially means
their reduction to linear problems. In addition this third aspect shows that the
general complex analysis is able to make use of results of classical function theory
and of such results which originally have not been connected with partial differential
equations.

In the light of the above said, the workshop set to introduce mathematicians
and physicists to functional-analytic methods in complex analysis and to show how
these can be applied to partial differential equations, to survey current related
knowledge and to draw attention to research problems. The core topics, as can be
seen from the table of contents, were:

— weak solutions of partial differential equations

— basic integral operators in complex analysis

— solution of boundary value problems for elliptic partial differential equations
in the plane by complex methods

— generalized analytic functions

— generalizations to higher dimensions

The success of any project depends on dedication of many. With regards to our
workshop we would like to thank all the lecturers for their efforts before and
during the course. Our thanks go as well to participants of the workshop as well as
to those applicants who were not selected to attend for the interest they have
shown. We know that in turn all will join us in expressing our appreciation of the
truly exceptional administration and secretarial staff of the Centre.

Ali Seif Mshimba
University of Dar es Salaam
Dar es Salaam, Tanzania

Wolfgang Tutschke
Martin Luther University
Halle, German Democratic Republic
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ODUCTION : THE NEW METHODS OF 1S

( wWolfgang Tutschke - Martin ILuther University )

0,1, Features of the classical complex function theory

The complex function theory has been developed as a theory of
differentiable functions of a complex variable. A function

w = £(z) depending of a complex variable 2z is said to be
differentiable in the complex sense at z, if the limit of the
complei?difference quotient

£(z) - £(z)

2 - 2
o

exists and does not depend on the direction in which 2z tends
to Z, . Complex differentiability is more restrictive than the
differentiability with respect to a real variable. Therefore
holomorphic functions, i.e. functions differentiable in the
complex sense, possess many special properties such as the
following:

0.1.1, Inside a closed curve 7 the values of a holomorphic
function w = w(z) can be represented by the Cauchy integral
formula:

£(2) =—[ (1

'{.-z
i.e. the values of f inside ,ﬁ are uniquely determined by
its values on r .

0.1.2. A holomorphic function is locally representable by
a power series in 2z, i.e.
oo

£(z) = Z a(z - zo)k (2)
k=0

if £ is holomorphic in a neighbourhood of Zg .

0.1.3. Generalizing the power series representation (2), a
holomorphic function can be represented by a Laurent series
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02) = P 8 (z-3)"

k=-00

in a neighbourhood of an isolated singular point Zg - This
representation leads to an easy classification of singular
points.

0,2 onnections of the complex function theory with other
fields in mathematics

Special features of holomorphic functions such as those

mentioned in Os1. enable to apply the complex function theory
in many branches of mathematics such as the following:

0.2.,1, Connections with geometry

A holomorphic function realizes a conformal mapping, i. e.

the angle between curves remains unchanged by a mapping defined
by & holomorphic function. This fact was the starting point of
the geometrical function theory whose first main result was the
Riemann mapping theorem (which states that a simply connected
domain, with two boundary points at 1east,is conformally equi-
valent to the unit disk).

0.2.2, Connections with the global analysis

The global behaviour of a holomorphic function is uniquely
determined by its local behaviour. This fact is based on the
principle of analytic continuation: Carrying out all possible
analytic continuations along curves (by rearrangement of the
power series), a given power series (2) leads to a function
defined, possibly multi-valued, in the z-plane.

The domain of definition of such a multi-valued function is
a Riemann surface. To each Riemann surface one can construct
a so-called universal covering surface which turns out to be
simply connected. Applying an extended version of the Riemann
mapping theorem (cf. 0.2.1), it follows that there exists an



one-to-one mapping of the universal covering surface onto
the unit disk, the z-plane and the extended z-plane resp.
Restri cting this mapping to the Riemann surface originally
given, one gets a uniformization of that Riemann surface
(cf. R. Nevanlinna [24]).

0.2 onnections with algebra

Such a connection is given, for instance, by the fact that

a Riemann surface is compact if and only if it is the corresponding
Riemann surface to an algebraic function, i.e. to a function

w = f£(z) defdned by

Z 81 zkwl =0
k,1
where the are (complex) constants and the summation is

finite.
0.2.4. Connections with partiel differentiasl equations

Real part u and imaginary part v of a holomorphic function
w=u+ iv = £(2) satisfy the well-known Cauchy-Riemann system

dv
= + 5> = 0,
k 2 30r ¥4 _ (3)

8k1

and, consequently, the real part u and the imaginary part
v as well are solutions of the Laplace equation; j.e,

2 22
Au ':%;% +‘;;% =0 (4)
and »
%y 2
vV = S;% +‘5;% = 0.

Suppose that w = £(z) is holomorphic in the (bounded) domain
D and continuous in the closure D . Taking into account that
a solution of (4) in D 4is uniquely determined by its
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boundary values on @D , it follows immediately that the real
part u of a holomorphic function is uniquely determined in
D by its boundary values on @D . On the other hand, in view
of (3) the real part u determines the imaginary part v
up to a constant.

Summarizing these considerations, we see that a function

w = £(2z) holomorphic in D and continuous in D is uniquely
determined by the boundary values of the real part and the
value of the imaginary part in one point of D (Dirichlet’s
boundary value problem for holomorphic functions). Instead of
prescribing the real part on the boundary it is possible to
prescribe a linear combination of real and imeginary part on
the boundary (Riemann-Hilbert’s boundary value problem).

Boundary value problems such as Dirichlet’s and Riemann-Hilbert’s
ones for systems of partial differential equations more general
than the system (3) can be solved by reducing these problems

to analogous ones for holomorphic functions. For that purpose

the solutions of general equations must be represented by
holomorphic functions. The basic idea for deducing such
representations is to solve the inhomogeneous Cauchy-Riemann

system
9
GRERRE (
5)
¥,
vy x T 2

where h,, h2 are given functions in D . The system (5)
can be solved by the so-called Tp-operator (cf. 0.3.3.)

0.,3. Partial complex derivatives and corresponding integral
operators

0,3.1. Partial complex derivatives (Wirtinger operators

The ordinary complex differentiation E% can be carried out

only for holomorphic functions. In order to apply complex



methods to partial differentiel equations more general than

the Cauchy-Riemann system (3) and the Laplace equation (4)
resp., it is necessary, consequently, to replace a% by partial
complex differentiations which are defined not only for
holomorphic functions.

Take any continuously differentiable (complex-valued) function

w = f(z) defined in a neighbourhood of z, = X, + iy . Then

~
the linearization f of f at the point Z, is given by

w=1(2) = £2(z)) + cy(x = x)) + cx(y - ¥,) (6)
N
where 2z = x + iy, Z2, = X + iyo, and
o 2t
c1=’—x(z°) : o =3y (Zo) i
Since
z-z =(x-x)+1(y-y),
g-2) ={x=x) =~1(y =y,
one gets
X -x = % (?z - zo) + (z - zos),
y-y°=% ((z-zoi—(z—zo))

and, therefore, the linearization (6) can be rewritten in
the form

w= f(z) = f(zo) + d, (z - zo) + d, (z - zos

where
a3ty -t <3 Bz -1 ),
a, = .:|2. (cq + icy) =% ’%(zo) + ig—r(zo)).

The coefficients d1, d2 are called the partial complex
derivatives of f at the point z, and are denoted by



4 (zo) and zé (zo) resp. .
z

z

Generally speaking we define

2t _ 1 3¢ of
2:-2Gx 139 >
dr _ 1 ,9f r
-= == (=+13).
2z 2 o= TA
The differential operators 5’—2 and )l_ are the so-called
z

Wirtinger operdtors.

Using these operators, the Cauchy-Riemann system (3) can be
written in the form

2w,

- ’
Dz

whereas the inhomogeneous (5) can be rewritten as
Ww
oz

(where h = hy + ih2). The Laplace equation (4) can be
written in the form

2
4?_w_=o
229z

A first order system of type

2u u v v
Hj (x’yqu’v’—,—x’;Lyv%vé_y')=oy J=1,2, (7)

can be rewritten as

2 2
Cr 9z

provided the system (7) can be solved for suitably chosen
variables.

=F(Z, W,

(8)



0.3.2. Derivatives in Sobolev’s sense

Suppose that f is continuously differentiable. Then the

partial complex derivatives b—% and ?_—{ exist and are
zZ

continuous. Denote 2_2 by &g .

2z
Now take any test function ¢ in D, i.e. a continuously
differentiable function which vanishes in a neighbourhood of

,\—“\’\T IT7~ the boundary 3D of D .
~<_\ Notice that the well-known
P D “:‘, Gauss-Ostrogradski integral
‘\:'\\ ,;\/’ formula can be written in
<\/7‘ N the complex form

ﬂ"—fdxdyr;—i ghdz. (9)
2z

D 2D

Consider D = f¢ . Take into consideration that h vanishes on
©®D and, moreover, that

°h _ 9F 2 _,
2z 3z z‘f +g?

Then formule (9) implies that the relation

gg (t¥+ g) dx dy = 0 (10)
2z
D

holds for any test function provided g 1is the derivative
of f with respect to z (in the classical sense).

Formula (10) enables to generalize the concept of derivatives:
Suppose that for a given function f (not necessarily differentiable
in the classical sense) there exists a further (integrable) function
g such that (10) is satisfied for any test function ¢ . Then

g 1is said to be the derivative of f with respect to z in
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i4
Sobolev’s sense and is also denoted by 3 "
z
A variant of the above definition for the case of real variables
can be found in S. L. Sobolev’s book [4] . A still more general

definition of derivatives (derivatives in distributional sense)
is given in L. Schwartz’ book [3] .

0 Th D= and][b-ggeratorg

Many statements of real analysis are based on the fundamental
theorem of the integral calculus in view of which the function
defined by the Integral

X

Sh(g) dE = H(=)

a
with variable upper limit is differentiable and its derivative
at the point x 1is equal to

ol

= (¥) = h(x).

In other words, a special solution of the differential equation

d
S=n (11)
is given by -
H(x) = s‘ n(g) a%.
a

Notice that the general solution of (11) 1is given by
H(x) + const

because constants are the only functions whose derivatives

vanish ewerywhere.

The functional-analytic methods of complex analysis to be
explained here are based on the fact that for a (complex-
valued) function h defined in the bounded domain D the
partial complex differential equation

zw=hv (12)

o)
NlI



the so-called inhomogeneous Cauchy-Riemenn equation, can also
be solved by a function H defined explicitely by an integral,
namely

H(z)s-’l_ ((%—E—%d;dﬂv (13)
D

where t, =§+i-yl . For the sake of shortness the function H
defined by (13) 1is denoted by Tph, i.e. we have

2 Toh = h . (14)
2z T~

This differentiation must be interpreted in Sobolev’s sense,

in general.

We shall see that the TD—operator defined by (13) can be used not
only for solving the inhomogeneous Cauchy-Riemenn equation (12)
(see also (5)) but also for solving general (elliptic) systems

of partial differential equations in real variables. For that
purpose we must be in position to calculate the partial complex
derivative of TDh with respect to 2z . This derivative (again

in Sobolev’s sense) can also be expressed explicitely by an
integral operator, namely

% Tph =]'[Dh (15)

whereIh is defined by
dn .
[ 'Q-—z) % 7

For applying functional-analytic methods it is essential, further,
that the T - andID-operators turn out to be bounded in suitably
chosen function spaces (cf. I. N. Vekua [11]) Both operators are
bounded in the spaces ¥*(D), 0L k< 1 , end L(D), p>2.
Remember that g“ (D) conteins all functions w = w(z) satisfying
the Holder condition

Iw(z2) - w(z1)‘ £ K .\22 - z1|°(
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in D where X does not depend on Zyy 2o whereas L_(D)
is the space of all w = w(z) for which 'wlp is integrable
(in Lebesque’s sense). In addition, the T -operator is also

a bounded operator in the space "(ﬁ) of all functions contin
wess in D .

With regard to the definition and properties of the varions
function spaces we refer to L. A. Ljusternik and W. I. Sobolev
f2] and to A. Adams [1] as well.

0.3.4. Weyl’s lemma

Remember that any two solutions of the differential equations
(11) differ from each other by a constant.

Analogously, let us consider the difference W= Wy o= Wy of any
two solutions Wy and Wo of the inhomogeneous Cauchy-Riemann
equation (12). Then L satisfies the Cauchy-Riemann equation

?
&=o. (16)

2z
Conversely, let w, be any solution of (16) and wy & special
solution of the inhomegeneous Cauchy-Riemann equation (12) . Then
Wy = Wq o+ W is also a solution of (12) . Each holomorphic
function is a solution of the differential equatioi (16). Hence it
follows that Wy +§ is a solution of (12) 1if w4 is a
special solution of (12) and é is any holomorphic function.

Notice that the differential equation (16) must be understood
in Sobolev’s sense. Possibly there are solutions of (16) in
Sobolev’s sense not being classical holomorphic functions. This
possibility can be excluded by the so-called Weyl lemma saying
that (16) does not possess other solutions than classical
holomorphic functions (cf. H. Weyl [5] and L. Schwartz [3].

An elementary proof of Weyl's lemma is given in [13]),

Summarizing these arguments, one sees that the general solution
of the inhomogeneous Cauchy-Riemann equation (12) 1is given by



