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PREFACE

The number of published treatises on matrices is not large, and so far
as we are aware this is the first which develops the subject with special
reference to its applications to differential equations and olassiocal
mechanics. The book is written primarily for students of applied
mathematics who have no previous knowledge of matrices, and we
hope that it will help to bring about a wider appreciation of the
conciseness and power of matrices and of their convenience in ocom-
putation. The general scope of the book ig elementary, but ocoasional
disoussions of advanced questions. are not avoided. The sections con-

taining these discussions, which may with advantage be omitted at the

first reading, are distinguished by an asterisk.

The first four chapters give an account of those properties of
maitrices which are required later for the applications. Chapters 1
to mx introduce the general theory of matrices, while Chapter 1v is
devoted to various numerical processes, such as the reciprocation
of matrices, the solution of algebraic equations, and the calculation
of latent roots of matrices by iterative methods. :

The remainder of the book is concerned with applications. Chapters
v and vI deal in some detail with systems of linear ordinary differential
equations with constant coefficients, and Chapter vir contains ex-
amples of numerical solutions of systems of linear differential equations
with variable coefficients. The last six chapters take up the subject
of mechanics. They include an account of the kinematics and dynamics
" of systems, a separate discussion of motions governed by linear dif-
- ferential equations, illustrations of iterative methods of numerical
_ solution, and a treatment of simple dynamical systems involving solid
friction. The part played by friction in the motions of dynamical
systems is as yet very incompletely understood, and we have con-
sidered it useful to inciude a very brief description of some experi-
mental tests of the theory. y

A considerable number of worked numerical examples bas been
inclided. It is our experience that the practical mathematician,
whose requirements we have mainly considered, is often able to grasp
the significance of & general algebraic theorem more thoroughly
when it is illustrated in terms of actual numbers. For examples of
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applications of dynamical theory we have usually chosen problems
relating to the oscillations of aeroplanes or aeroplane structuress
Such problems conveniently illustrate the properties of dissipative

dynamical systems, and they have a considerable practical importance.

A word of explanation is necessary in regard to the scheme of
numbering adopted for paragraphs, equations, tables, and diagrams,
The fourth paragraph of Chapter 1, for example, is denoted by § 1-4.
The two equations introduced in § 14 are numbered (1) and (2),
but when it is necessary in later paragraphs to refer back to these
equations they are described, respectively, as equations (1-4-1) and
(1-4-2). Tables and .diagrams are numbered in each paragraph in
serial order: thus, the two consecutive tables which appear in § 7-13
are called Tables 7-13-1 and'7-13-2, while the single diagram intro-
duced is Fig, 7-13-1.

The list of references makes no pretence to be complete, and in the
case of theorems which are now so well established as to be almost
classical, historical notices are not attempted. We believe that much
of the subject-matter—particularly that relating to the applications

. —presents new features and has not appeared before in text-books.

However, in a field so extensive and so widely explored as the theory
of matrices, it would be rash to claim complete’ novelty for any
particular theorem or method.

The parts of the book dealing with applications are based very

- largely on various mathematical investigations carried out by us

during the last seven years for the Aeronautical Research Committee.
We wish to express our great indebtedness to that Committee and to

' the Executive Committee of the National Physical Laboratory for

permission to refer to, and expand, a4 number of unpublished reports,
and for granting many other facilities in the preparation of the book.
We wish also to record our appreciation of the care which the Staff of
the Cambridge University Press has devoted to the printing.

Our thanks are also due to Miss Sylvia W. Skan of the Aerodynamics

Department of the National Physical Laboratory for considerable °
- ‘assistance in computation and in the reading of proofs.

R.A.F,

W.J.D. "

A. R. C.
March 1938
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ADDENDA ET CORRIGENDA

P- 120, 2nd table, 2nd row, for “‘ry— 2r,” read “re—3r,".
P 144, para. beginning at line 8 should read
"Ifthemarepdmtmotdommantroots}t,ll, LAy mdlfx,x, . &, are the

corresponding modal rows, the procedure is as followz Partition t.he (P, n)

mltl'l.! {Kl’ ‘.,

.» K} in the form [a, #], where a is a (P, p) submatrix, assumed

to be non-singular (rearrangement of the rows of « and columns of [«, 8] may be
necessary to satisfy this condition).. In this case the required matnx w i8 con-
structed in the partitioned form

N

and then v=wl-w)= u[o. —a-‘ﬂ].
R |
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vadentlyvhupaemoolumnsqndlmoepmhtentrooﬂ. Ifrenmgmt
. has been required, « must be in the corresponding rearranged form. "

Thechoweofanon-nnguhriubmntuxauagmenhnﬁmoftheohoi«of :
anonzemelamentx,,mtheehmmationofadnglodommtm&

This proocess is in effect that whioh is spphed in the numerical example on
p- 330.” :

p 176, eqmmon (4), denominator of third fraction, for
“ABA,) (A= ,)" read “A,4MA,) (A~A,)".

P- 252, equation at bottom, interchange first and third matrices on the right-
hand side. / : :

P. 277. It is to be noted that in the definition of z at line 8, a is used to denote
a set of panmetera. Theresftea-udenotea the components of Aooebmtlon

p 291, §9-8. The following is a simple alternative proof of the reality of the
roote of the determtmmtal equation 4,(z) = 0 when A and E are real and
symmetrical, ) :

Let z, k respectively denote any root and its associated modal oolumn and -
let Z, k be the corresponding conjugates (see § 1-17). Then

zAk=Ek. e (1)
Premultiplication by &’ yields ¢
k’Ak =F'Bk, = e (2)
and by transposition )
zk’Ak = k' Ek.
The conjugate relation is Y.
Ak =FEk. e 3 -

Compa.nson of (2) and (3) gives z = %, which shows that z is real. Thus by (1)
k is real, and by (2) 2 is positive when the potential energy function is poslhve
and definite.

p- 310, §10-2(e), second sentence should read “The pnnoxple shows that first
ordor errors in the mode yield only seoont’i ‘order errors in the frequency as

caloulated by the equation of energy ™.
Also line 10 should read “used, and when U happens to be syunnetrxoal. a

convenient . .
p. 3185, line @ from bottom, for “Rayleigh’s principle will next be a.pphed”
‘ “Bince U is symmetncal. the extension of Rnylelgh's principle given in
§10- 2(0) can be applied ..

p. 368, §12:3, line 4, for “given” read *‘are given'".
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. i CHAPTER I * .

FUNDAMENTAL DEFINITIONS AND
ELEMENTARY PROPERTIES

1:1. Preliminary Remarks. Matrices are sets of numbers or
other elements which are arranged in rows and columns as in a double
entry table and which obey certain rules of addition and multiplication.
These rules will be explained in §§ 1-3, 1-4. '

Rectangular arrays of numbers are of course very familiar in geo-
metry and physics. For example, an ordinary three-dimensional
vector is represented by three numbers called its components arranged
in one row, while the state of stress at a point in a medium can be
represented by nine numbers arranged in three rows and three columns.
However, two points must be emphasised in relation to matrices.

" Firstly, the idea of a matrix implies the treatment of its elements taken

as a whole and in their proper arrangement. Secondly, matrices are

“something more than the mere arrays of their elements, in view of the .

rules for their addition and multiplication.

1-2. Notation and Principal Types of Matrix. (a) Rectangular
Matrices. The usual method of representing a matrix is to enclose the
array of its elements within brackets, and in general square brackets
are used for this purpose.* For instance, the matrix formed from the

array 1 12 0
' 5 6 1

is represented by 1 12 0].
[5 ] 1]

The meaning of other special brackets will be explained later. If a
matrix contains lengthy numbers or complicated algebraic expressions,
the elements in the rows can be shown separated by commas to avoid
confusion. A

The typical element of a matrix such as

-An Al‘ oen Aln
Aal A LX) Ah
Aml Am’; oo 'Amn

* Some writers empl::y thick round brackets or double lines.

-




e

2 : e R o kYD R
can be denoted by 4,;, where the suffices + and j are understood to

. range from 1 to m and from'1 to n, respectively. A convenient abbre-

viated notation for the complete matrix is then [4,], but in cases

where no confusion can arise it is preferable to omit the matrix brackets.

and the suffices altogether and to write the matrix simply as 4.
The letters 4, j are generally used in the sense just explained as
suffices for a typical element of a matrix. Specific elements will

- generally have other suffices, such as m, », r, 8.

(6) Order. A matrix having m rows and n columns is said to be of

order m by n. For greater brevity, such a matrix will usually be re- :

ferred to as an (%, n) matrix; the bar shows which of the two numbers

'm, n relates to the rows.*

(c) Column Matrices and Row Matrices. A matrix having m elements

arranged in a single column——namely, an (7, 1) matrix—will be called

a column matriz. A column of numbers occupies much vertical spaoce,
and it is often preferable to adopt the convention that a single row of
elements enclosed within braces represents a column matrix. For

Apatios; {#1, T, T3} = [21] -
B
A literal matrix such as the above can be written in the abbreviated

form {z,}.

In the same way a matrix with only a single row of elements will be
spoken of as a row matriz.t When it is necessary to write a row matrix
at length, the usual square brackets will be employed; but the special
brackets | | will be used to denote a literal row matrix in the abbreviated
form. For qxa.mple, 951 = Y1, Ya» ¥l

In accordance with the foregoing conventions, the matrix formed
from the rth column of an (M, n) matrix [4,,] is

{Alf’ .Aa., seey Amr}:

" and this can be represented as {4}, provided that 7 is always taken to
- be the typical suffix and r the specific suffix. In the same way the

matrix formed from the sth row of [4,,] is
[y, Aegsoees Agnls

: mdthumbeoqmduLA.,J

* An alternative notetion, which is i current use, is [A]%.
+ A row matrix is often called a line matriz, & veclor of the first kind, or & prime; whiha
column matrix is referred to a8 & vedlor of the second kind, or a poind.

X



